Skip to main content

Infiltration of Rainwater in Urban Areas

  • Chapter
  • First Online:
Management of Water Quality and Quantity

Part of the book series: Springer Water ((SPWA))

Abstract

Contrary to traditional practice when rainwater is collected and conveyed from urban areas by combined, or storm sewers, present approach to the integrated stormwater control consists in the accumulation and infiltration of rainwater at the place of its origin. For design of the rainwater infiltration facility, the geological survey must be carried out, the method of infiltration has to be proposed and hydraulic calculation should be carried out. The design is subject to numerous uncertainties, arising from different conditions the infiltration tests, in design parameters and in operating an infiltration facility. In this chapter, the review of the most used facilities for infiltration is presented together with a brief description of geotechnical investigation and hydraulic approach recommended in the Czech Republic. An analysis of factors influencing the process of infiltration is carried out, related uncertainties influencing the design of the storage volume of the infiltration facility are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grischek T et al (1996) Urban groundwater in Dresden. Hydrol J 4(1):48–63

    Google Scholar 

  2. Watkins DC (1997) International practice for the disposal of urban runoff using infiltration drainage system. In: Groundwater in the urban environment, vol 1: problems, processes and management: proceedings of the XXVII IAH congress on groundwater in urban environment. Balkema, Nottingham. Rotterdam, pp 205–210

    Google Scholar 

  3. Hlavínek P et al (2007) Rainwater management in urban area. Ardec, Brno, p 164

    Google Scholar 

  4. Říha J et al (2015) Guidance: determining parameters for the design of infiltration facilities, 1st edn., p 120

    Google Scholar 

  5. Krejčí V et al (2000) Drainage of urbanized areas-conceptual approach. Noel, Brno, p 560

    Google Scholar 

  6. Pazwash H (2016) Urban storm water management, 2nd edn. CRC Press, p 684

    Google Scholar 

  7. Ferguson BK (2017) Stormwater infiltration. CRC Press, p 288

    Google Scholar 

  8. Guo JCY (2017) Urban flood mitigation and stormwater management. CRC Press, p 589

    Google Scholar 

  9. Bloomberg MR, Strickland CH (2012) Guidelines for the design and construction of stormwater management systems. Department of Environmental Protection and Department of Buildings, New York, p 137

    Google Scholar 

  10. DWA (2005) Planning, construction, and operation of facilities and infiltration of precipitation water. Arbeitsblat DWA-A 138. Hennef, Deutschland, p 60

    Google Scholar 

  11. DWA (2007) Recommendations for dealing with rainwater. Merkblatt DWA-M 153. Hennef, Deutschland, p 8

    Google Scholar 

  12. PWD (2014) Stormwater management guidance manual version 2.1. SMGM 2.1. Philadelphia Water Department, Philadelphia, USA, p 381

    Google Scholar 

  13. Water Sensitive Urban Design Guidelines (2013) South Eastern Council, Melbourne Water, Melbourne, Victoria, p 44

    Google Scholar 

  14. DESW (2013) Eastern Washington low impact development guidance manual. Department of Ecology State of Washington, p 249

    Google Scholar 

  15. The Act No. 183/2006 Coll. (2006) Act on town and country planning and building code (The Building Code). Czech Republic

    Google Scholar 

  16. The Act No. 254/2001 Coll. (2001) Act on Water (The Water Act). Czech Republic

    Google Scholar 

  17. ČSN 75 9010 (2012) Stormwater soakaways. Institut for standardization and testing. Czech Office for Standards, Metrology and Testing, Prague, p 44 (in Czech)

    Google Scholar 

  18. TNV 75 9011 (2013) Sustainable stormwater management. Ministry of Agriculture in Czech Republic, Prague, p 65 (in Czech)

    Google Scholar 

  19. ATV-DVWK, A 138 (2001) ATV-Abwassertechnische Vereinigung: Plannung, Bau, und Betrieb von Anlagen und Versickerung von Niederschlagen. Arbeitsblat. German Association for Water Management (in Deutch)

    Google Scholar 

  20. Implementation Decree No. 268/2009, Coll. (2009) Decree on technical requirements for civil structures. Czech Republic

    Google Scholar 

  21. Implementation Decree No. 501/2006, Coll. (2006) Decree on general land use requirements. Czech Republic

    Google Scholar 

  22. Field R (2018) Integrated stormwater management. CRC Press, p 399

    Google Scholar 

  23. Decree 432/2001, Coll. (2001) Decree of the Ministry of Agriculture on the documents for the request for a decision or statement and on the permits, permissions and statements of the water authority. Czech Republic

    Google Scholar 

  24. The Announcement No. 499/2006, Coll. (2006) About the documentation of civil structures. Czech republic

    Google Scholar 

  25. Land registry of the Czech Republic. Retrieved from www.geoportal.cuzk.cz. Accessed on Aug 2018

  26. MACR (2011) Report on water management in the Czech Republic. Ministry of Agriculture of the Czech Republic, p 100

    Google Scholar 

  27. Butler D, Davies JW (2011) Urban drainage, 3rd edn. Spon Press, p 652

    Google Scholar 

  28. TP-83 (2014) Drainage of roads, technical conditions. Ministry of Transport, Department of Roads, Czech Republic, p 60 (in Czech)

    Google Scholar 

  29. Archive Geofond, Czech geological survey services. Retrieved from www.geology.cz. Accessed on Aug 2018

  30. State administration of land surveying and cadaster. ČÚZK. Retrieved from www.cuzk.cz. Accessed on Aug 2018

  31. Bear J, Verujiit A (1992) Modeling groundwater flow and pollution. D. Reidel Publishing Company, Holland, p 414

    Google Scholar 

  32. Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, New Jersey, p 584

    Google Scholar 

  33. Šejna M, Šimůnek J (2007) HYDRUS (2D/3D): Graphical user interface for the HYDRUS software package simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media (online)

    Google Scholar 

  34. Šimůnek J, van Genuchten MTh, Šejna M (2006) The HYDRUS Software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Praha, p 241

    Google Scholar 

  35. Benetín J (1958) Movement of water in the soil. Vyd. SAV, Bratislava, p 216 (in Slovak)

    Google Scholar 

  36. Jetel J (1982) Determination of hydraulic parameters of soils by hydrodynamic tests in boreholes (in Czech)

    Google Scholar 

  37. Girinskij NK (1953) Opredelenije koefficienta filtraciji peskov i suspesej po dannym naliva v šurfy. In: Trudy VEGINGEO Voprosy gidrogeologii i inženěrnoj geologii. Gosgeoltěchizdat, Moskva, pp 28–60 (in Russian)

    Google Scholar 

  38. Galabov M (1966) Nomogrami za chidrogeložki izčislenija. Izd. Technika, Sofija, p 144

    Google Scholar 

  39. Reynolds WD, Elrick DE, Topp GC (1983) A re-examination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table. Soil Sci 136(4):250–268

    Article  Google Scholar 

  40. Elrick DE, Reynolds WD (1992) Methods for analyzing constant-head well permeameter. Soil Sci Soc Am J 56:320–323, Canada

    Google Scholar 

  41. Elrick DE, Reynolds WD, Tan KA (1989) Hydraulic conductivity measurements in the unsaturated zone using improved well analysis. Ground Water Monit Rev 9:184–193

    Article  Google Scholar 

  42. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142. https://doi.org/10.1007/s1040-01-0182-4

  43. ČSN EN ISO 22282-5 (2012) Geotechnical investigation and testing-Geohydraulic testing. Part 2, water permeability tests in a borehole using open systems. Institut for standardization and testing. Czech Office for Standards, Metrology and Testing, Prague, p 32

    Google Scholar 

  44. Earth manual part 2 (1990) 3rd edn. Denver, Colorado, p 1278

    Google Scholar 

  45. Bouwer H, Rice RC (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

    Article  Google Scholar 

  46. van Genuchten MTh, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0. EPA report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California, p 93

    Google Scholar 

  47. Bareš V, Kabelková I, Stránský D (2013) TNV 75 9011 precipitation water management, Part 3: dimensioning of objects and facilities. Water Manage 11(2013):383–386

    Google Scholar 

  48. Vukovič M, Soro A (1992) Hydraulics of water wells. Theory and application. Water Resources Publications, LLC, Chelsea, Michigan, p 354

    Google Scholar 

  49. ČSN EN ISO 22282-2 (2012) Geotechnical investigation and testing—geohydraulic testing—Part 2: water permeability tests in a borehole using open system. Czech Office for Standards, Metrology and Testing, Prague

    Google Scholar 

  50. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. U.S. Army, Corps of Engineers, Waterways Experiment Station, Vicksburg MS, Bull. 36, p 53

    Google Scholar 

  51. Bouwer H (1974) Renovating municipal wastewater by high rate infiltration for groundwater research. J Am Water Works Assoc 159–162

    Google Scholar 

  52. Cooper HH, Bredehoeft JD, Papadopulos SS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3(1):263–269

    Article  Google Scholar 

  53. Custodio E (1986) Recarga artificial de acuíferos. Ministerio de Obras Públicas y Urbanismo. Boletín de Informaciones y Estudios, no 45 (Febrero 45), p 134 (in Spanish)

    Google Scholar 

  54. MUNLV (2001) Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV NRW), 2001. Naturnahe Regenwasserbewirtschaftung. Zukunftsfähige Wasserwirtschaft in Industrie- und Gewerbegebieten, p 118

    Google Scholar 

  55. ČSN EN 1997 (1997) Eurocode 7. Geotechnical design, p 138

    Google Scholar 

  56. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Open-file report 00-92. U.S. Geological Survey, p 127

    Google Scholar 

  57. Lin H-CJ, Richards DR, Talbot CA (2011) A three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media, version 3.0, p 150

    Google Scholar 

  58. Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MTh (2009) The hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.08, HYDRUS software series 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, p 332

    Google Scholar 

  59. Duchan D, Říha J (2017) Stormwater infiltration facilities-philosophy, design. Int J Water Resour Arid Environ 6(2017):33–40

    Google Scholar 

  60. Dubar s.r.o. Retrieved from www.dubar.cz. Accessed on Aug 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Duchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duchan, D., Říha, J. (2020). Infiltration of Rainwater in Urban Areas. In: Zelenakova, M., Hlavínek, P., Negm, A. (eds) Management of Water Quality and Quantity. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-18359-2_4

Download citation

Publish with us

Policies and ethics