Skip to main content

The Green Roofs and Facades as a Tool of Climate Cooling in the Urban Environment

  • Chapter
  • First Online:
Book cover Management of Water Quality and Quantity

Abstract

The aim of this monograph chapter is to introduce green facades and green roofs in the Czech Republic. In the beginning, the history and development of green roofs and facades have been outlined; the type of green roofs and ways of facade greening, structures and systemic solutions, protection against slide and drainage have been described; and the functions and benefits of green roofs and facades have been estimated. Next part discusses measurements of the vapor from green roofs and the cooling effect. Finally, the zero carbon facility has been described—example from Brno (Czech Republic)—The Open Gardens. The results from online monitoring have been shown, and the roof and urban heat islands have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ČSN 73 1901 (2011) Roof design—basic provisions. ÚNMZ, Prague

    Google Scholar 

  2. Kotásková P, Štěpán J (2016) Green roofs of wooden constructions. In: Building partner 2/2016, pp 27–39. ISSN 1805-5958

    Google Scholar 

  3. Čermáková B, Mužíková R (2009) Green roofs. 1st ed. Praha: Grada, 246 pp. ISBN 978-80-247-1802-6

    Google Scholar 

  4. Frkal L (2007) Houses protected by soil. 1st ed. ERA group, Brno 94 pp. ISBN 978- 80-7366-095-6

    Google Scholar 

  5. Zamarovský V (1990) For the seven wonders of the world. Albatros, Praha, p 253

    Google Scholar 

  6. Šimečková J, Večeřová I (2010) Green roofs—Hope for the future. 1st ed. Union of Planting and Maintenance of Green, Brno, 40 p. Available from www: http://www.zelenestrechy.info/UserFiles/File/szuz_zelene-strechy_indd.pdf

  7. Haas F (1983) Architecture of the 20th century: nationwide textbooks for college students at university, 3rd edn. SPN. Textbooks for universities, Praha

    Google Scholar 

  8. Guardian (2015) France decrees new rooftops must be covered in plants or solar panels [online]. [cit. 2018-03-02]. Available from: https://www.theguardian.com/world/2015/mar/20/france-decrees-new-rooftops-must-be-covered-in-plants-or-solar-panels

  9. Olšan J (2011) History of trelages, pergolas and green walls (Historie treláží, pergol a zelených stěn). In: Green facade (Zelené fasády: odborný jednodenní seminář). Společnost pro zahradní a krajinářskou tvorbu, Praha 152 pp

    Google Scholar 

  10. Růžička V (2011) Beautiful vertical gardens saving homes (Krásné vertikální zahrady zachraňují domy). [online]. [cit. 2016-03-08]. Available from: https://bydleni.idnes.cz/vertikalni-zahrada-0aw-/architektura.aspx?c=A110624_111117_architektura_web

  11. Vrabcová A (2017) Detached house with a green roof project (Návrh rodinného domu se zelenou střechou). Bachelors thesis. Brno, Mendel University

    Google Scholar 

  12. Pejchal M (2011) Plants for “vertical gardens” outdoors. (Rostliny pro “vertikální zahrady” ve venkovním prostoru). In: Green facade (Zelené fasády: odborný jednodenní seminář). Praha: Společnost pro zahradní a krajinářskou tvorbu. 152 p. pp 1–6

    Google Scholar 

  13. Burian S (2011) Use of climbing plants (Využití pnoucích rostlin). In: Green facade (Zelené fasády: odborný jednodenní seminář). Společnost pro zahradní a krajinářskou tvorbu, Praha, 152 p

    Google Scholar 

  14. Přerovská Z (2013) Vertical gargens in exterior and interior (Vertikální zahrady v exteriéru a interiéru). Diploma thesis. Mendel University, Brno

    Google Scholar 

  15. ČSN 73 05 40-2 (20012) Thermal protection of buildings—Part 2: requirements. ÚNMZ, Prague

    Google Scholar 

  16. Minke G (2001) Green Roofs: planning, realization, practice examples. 1st ed. Ostrava: HEL. 92 pp. ISBN 80-86167-17-8

    Google Scholar 

  17. Balík L (2009) About the green roofs (O zelených střechách) [online]. [cit. 2018-05- 06]. Available from: https://www.zelenastrechacz.cz/zelene-strechy

  18. Ulrychová M (2009) Mur vegetal—Patric Blanc [online]. [cit. 2018-03-02]. Available from: http://www.greenlab.cz/cs/clanky/mur-vegetal-patrick-blanc/

  19. Růžička V (2015) Green facades in several ways (Zelené fasády na několik způsobů). [online]. [cit. 2016-04-08]. Available from: https://mujdum.dumabyt.cz/rubriky/zahrada/zelene-fasady-na-nekolik-zpusobu_1954.html

  20. Oke T (1973) City size and the urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  21. Taha H, Sailor D, Akbari H (1992) High-albedo materials for the reduction of building cooling energy use [online]. 1992, 17 [cit. 2018-04-10]. doi: 10.2172/7000986. Available from: https://www.osti.gov/biblio/7000986

  22. Forman RTT (2014) Urban ecology. Cambridge University Press, Science of Cities, p 462

    Google Scholar 

  23. Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NSG (2015) Planning for cooler cities: a framework to prioritize green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138

    Article  Google Scholar 

  24. Krüger EL (2015) Urban heat island and indoor comfort effects in social housing dwellings. Landsc Urban Plan 134:147–156

    Article  Google Scholar 

  25. Varras G, Chiotelli K, Fragaki V, Karras G, Tsantopoulos G (2016) Potentials and prospects for the expansion of green areas on buildings in the metropolitan area of Athens. Acta Hortic 1108:331–337

    Article  Google Scholar 

  26. Aflaki A, Mirnezhad M, Ghaffarianhoseini A, Ghaffarianhoseini A, Omrany H, Wang ZH, Akbari H (2017) Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 62:131–145

    Article  Google Scholar 

  27. Dhalluin A, Bozonnet E (2015) Urban heat islands and sensitive building design—a study in some french cities’ context. Sustain Cities Soc 19:292–299

    Article  Google Scholar 

  28. Tapia C, Abajo B, Feliu E, Mendizabal M, Martínez JA, Fernández JG, Laburu T, Lejarazu A (2017) An indicator-basedvulnerability evaluation for European cities. Ecol Ind 78:142–155

    Article  Google Scholar 

  29. Sheweka SM, Mohamed NM (2012) Green facades as a new sustainable approach towards climate change. Energy Proced 18:507–520

    Article  Google Scholar 

  30. Brandenburg Ch, Damyanovic D, Reinwald F, Allex B, Gantner B, Czachs Ch, Morawetz U, Kömle D, Kniepert M (2015) Urban Heat Islands. Strategieplan Wien, Wiener Umweltschutzabteilung—Magistratsabteilung, p 22

    Google Scholar 

  31. Rayner JP, Raynor KJ, Williams NSG (2010) Façade greening: a case study from melbourne. Australia Acta Hort 881:709–713

    Article  Google Scholar 

  32. Murphy SM, Rayner JP, Hall G, Francis J (2016) Growing green: developing industry guidelines for green infrastructure. Acta Hortic 1108:291–296

    Article  Google Scholar 

  33. Köhler M (2006) Long-term vegetation research on two extensive green roofs in Berlin. Urban Habitats 4:3–26

    Google Scholar 

  34. Pérez G, Rincón L, Vila A, González JM, Cabeza LF (2011) Behavior of green façades in mediterranean continental climate. Energy Convers Manag 52:1861–1867

    Article  Google Scholar 

  35. AboElata AAA (2017) Study the vegetation as urban strategy to mitigate the urban heat island in the mega city of Cairo. Process Environ Sci 37:386–395

    Article  Google Scholar 

  36. Sunakorn P, Yimprayoon Ch (2011) Thermal performance of biofacade with natural ventilation in the tropical climate. Process Eng 21:34–41

    Google Scholar 

  37. Martin M, Afshari A, Armstrong PR, Norford LK (2016) A new validation protocol for an urban microclimate model based on temperature measurements in a Central European city. Energy Build 114:38–53

    Article  Google Scholar 

  38. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration- Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300(9):D05109

    Google Scholar 

  39. Duffková R, Kučera, J (2005) Methodology of analysis of water stress of grassland. In: Rožnovský J, Litschmann T (edn) Seminar “Evaporation and evapotranspiration”, Brno, March 23, 2005, ISBN 80-86690-24-5, pp 59–66

    Google Scholar 

  40. Kučera et al (2011) Evapotranspiration of selected types of agricultural and forest stands. In Hydrology of Small Basin 2011

    Google Scholar 

  41. Minke G (2001) Green Roofs: planning, realization, examples from practice. 1st ed. HEL, Ostrava. ISBN 80-86167-17-8

    Google Scholar 

  42. Afshari A (2017) A new model of urban cooling demand and heat island-application to vertical green systems (VGS). Energy and Buildings, in press

    Google Scholar 

  43. Spala A, Bagiorgas HS, Assimakopoulos MN, Kalavrouziotis J, Matthopoulos D, Mihalakakou G (2008) On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens Greece. Renew Energy 33:173–177

    Article  Google Scholar 

  44. Zölch T, Maderspacher J, Wamsler Ch, Pauleit S (2016) Using green infrastructure for urban climate-proofing: an evaluation of the thermal mitigation measures at the micro-scale. Urban Forestry and Urban Greening 20:305–316

    Article  Google Scholar 

  45. Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A, Mihalakakou G (2001) Analysis of the green roof thermal properties and the investigation of its energy performance. Energy Build 33:719–729

    Article  Google Scholar 

  46. Wong NH, Tan AYK, Chen Y, Sekar K, Tan PY, Chan D, Chiang K, Wong NCH (2010) Thermal evaluation of vertical greenery systems for building walls. Build Environ 45:663–672

    Article  Google Scholar 

  47. Cheng CY, Cheung KKS, Chu LM (2010) Thermal performance of a vegetated cladding system on façade walls. Build Environ 45:1779–1787

    Article  Google Scholar 

  48. Perini K, Ottelé M, Fraaij ALA, Haas EM, Raiteri R (2011) Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ 46:2287–2294

    Article  Google Scholar 

  49. Wong NH, Tan AYK, Tan PY, Wong NCh (2009) Energy simulation of vertical greenery systems. Energy Build 41:1401–1408

    Article  Google Scholar 

  50. Yuan J, Emura K, Farnham C (2017) Is urban urban albedo or urban green covering more effiective for urban microclimate improvement? A simulation for Osaka. Sustain Cities Soc 32:78–86

    Article  Google Scholar 

  51. Stec WJ, van Paassen AHC, Maziarz A (2005) The modeling of the double skin facade with plants. Energy Build 37:419–427

    Article  Google Scholar 

  52. Larsen SF, Filippin C, Lesino G (2014) Thermal simulation of a double skin façade with plants. Energy Proced 57:1763–1772

    Article  Google Scholar 

  53. Lobaccaro G, Acero JA (2015) Comparative analysis of green actions to improve outdoor thermal comfort within typical urban street canyons. Urban Climate 14:251–267

    Article  Google Scholar 

  54. Feng H, Hewage K (2014) Energy saving performance of green vegetation on LEED certified buildings. Energy Build 75:281–289

    Article  Google Scholar 

  55. Gros A, Bozonnet E, Inard Ch, Musy M (2016) A new performance indicator to assess building and district cooling strategies. Process Engineering 169:117–124

    Google Scholar 

  56. Pons O, Nadal A, Sanye-Mengual E, Llorach-Massana P, Cuervad E, Sanjuan-Delmas D, Muñoze C, Rovira MR (2015) Roofs of the future: rooftop greenhouses to improve building metabolism. Process Eng 123:441–448

    Google Scholar 

  57. Jaffal I, Ouldboukhitine S-E, Belarbi R (2012) A comprehensive study of the impact of green roofs on building energy performance. Renew Energy 43:157–164

    Article  Google Scholar 

  58. Gross G (2012) Effects of different vegetation on the temperature in an urban building environment. Micro-scale numerical experiments. Meteorologische Zeitschrift 21(4):399–412

    Article  Google Scholar 

  59. Koyama T, Yoshinaga M, Maeda K, Yamauchi A (2014) Room temperature reductions in relation to growth traits of kudzu vine (Pueraria lobata): experimental quantification. Ecol Eng 70:217–226

    Article  Google Scholar 

  60. Ballarini I, Corrado V (2012) Analysis of the building energy balance to investigate the effect of thermal insulation in summer conditions. Energy Build 52:168–180

    Article  Google Scholar 

  61. Coma J, Pérez G, Solé C, Castell A, Cabeza LF (2014) New green facades as passive systems for energy savings on buildings. Energy Proced 57:1851–1859

    Article  Google Scholar 

  62. Ip K, Lam M, Miller A (2010) Shading performance of a vertical deciduous climbing plant canopy. Build Environ 45:81–88

    Article  Google Scholar 

  63. Castleton HF, Stovin V, Beck SBM, Davison JB (2010) Green roofs; building energy savings and the potential for retrofit. Energy Build 42:1582–1591

    Article  Google Scholar 

  64. Susca T, Gaffin SR, Dell’Osso GR (2011) Positive effect of vegetation. Urban heat island and green roofs. Environ Pollut 159:2119–2126

    Article  CAS  Google Scholar 

  65. Ascione A, Bianco N, de Rossi F, Turni G, Vanoli GP (2013) Green roofs in European climates. Does it have effective solutions for energy savings in air conditioning? Appl Energy 104:845–859

    Article  Google Scholar 

  66. Perini K, Rosasco P (2013) Costebenefit analysis for green façades and living wall systems. Build Environ 70:110–121

    Article  Google Scholar 

  67. Ottelé M, Perini K, Fraaij ALA, Haasa EM, Raiteri R (2011) Comparative life cycle analysis for green façades and living wall systems. Energy Build 43:3419–3429

    Article  Google Scholar 

  68. Bianchini F, Hewage K (2012) How “green” are the green roofs? Lifecycle analysis of green roof materials. Build Environ 48:57–65

    Article  Google Scholar 

  69. Sozer H (2010) Improving energy efficiency through the design of the building envelope. Build Environ 45:2581–2593

    Article  Google Scholar 

  70. Djedjig R, Bozonnet E, Belarbi R (2015) Experimental study of the urban microclimate potential of green roofs and green walls in street canyons. Int J Low-Carbon Technol 10:34–44

    Article  Google Scholar 

  71. Roehr D, Laurenz J (2008) Living skins: environmental benefits of green envelopes in the city context. Trans Ecol Environ 113:149–158

    Article  Google Scholar 

  72. Hoelscher M-T, Nehls T, Jänicke B, Wessolek G (2016) Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build 114:283–290

    Article  Google Scholar 

  73. Chanampa M, Rivas PV, Ojembarrena JA, Olivieri F (2010) Systems of vegetal façade and green roofs used as a sustainable option in architecture. Des Princ Pract: Int J 4:1–10

    Google Scholar 

  74. Williams NSG, Hughes RE, Jones NM, Bradbury DA, Rayner JP (2010) The performance of native and exotic species for extensive green roofs in Melbourne, Australia. Acta Hort 881:689–696

    Article  Google Scholar 

  75. Onmura S, Matsumoto M, Hokoi S (2001) Study on evaporation cooling effect of roof lawn gardens. Energy Build 33:653–666

    Article  Google Scholar 

  76. Takakura T, Kitade S, Goto E (2000) Cooling effect of greenery cover over a building. Energy Build 31:1–6

    Article  Google Scholar 

  77. Köhler M (2009) Energetic aspects of green roofs. In: Appl R, Ansel W (eds) Green roofs—bringing nature back to town. Proceedings: International Green Roof Congress. International Green Roof Association, Berlin, 181 p

    Google Scholar 

  78. Sala M (1998) Advanced bioclimatic architecture for buildings. Renew Energy 15:271–276

    Article  Google Scholar 

  79. Ascione F (2017) Energy conservation and renewable technologies for buildings to address the impact of climate change and minimize the use of cooling. Solar Energy, in press

    Google Scholar 

  80. Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: a review of building envelope components. Renew Sustain Energy Rev 15:3617–3631

    Article  Google Scholar 

  81. Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Köhler (2007) Green roofs and urban ecosystems: ecological structures. Funct, Serv BioScience 57(10):823–833

    Article  Google Scholar 

  82. White EV, Gatersleben B (2011) Greenery on residential buildings: Does it affect preferences and perceptions of beauty? J Environ Psychol 31:89–98

    Article  Google Scholar 

  83. Tong Z, Whitlow TH, Landers A, Flanner B (2016) A case study of air quality above an urban roof top vegetable farm. Environ Pollut 208:256–260

    Article  CAS  Google Scholar 

  84. Buchin O, Hoelscher M-T, Meier F, Nehls T, Ziegler F (2016) Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy Build 114:27–37

    Article  Google Scholar 

  85. Schuster Ch, Burkart K, Lakes T (2014) Heat mortality in Berlin—spatial variability at the neighborhood scale. Urban Climate 10:134–147

    Article  Google Scholar 

  86. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kazmierczak A, Niemela J, James P (2007) Promoting ecosystems and human health in urban areas using Green Infrastructure: a literature review. Landsc Urban Plan 81:167–178

    Article  Google Scholar 

  87. Kundrata et al (2017) Studie adaptačních opatření na zmírňování vlivu klimatických změn pro město Brno

    Google Scholar 

  88. CzechGlobe a kolektiv (2016) Zásady pro rozvoj adaptací na změnu klimatu ve městě Brně: s využitím ekosystémově založených přístupů. Východiska pro zpracování Strategie pro Brno 2050

    Google Scholar 

  89. Sorvig K, Thompson JW (2018) Sustainable landscape construction: a guide to green building outdoors. Island Press

    Google Scholar 

  90. Brandenburg Ch et al (2015) Urban Heat Islands—Strategieplan Wien

    Google Scholar 

  91. Adaptation futures (2016) [Online]. Available from: http://www.adaptationfutures2016.org/ Accessed on 12 June 2018

  92. Adaptation futures 2018 [Online]. Available from: https://adaptationfutures2018.capetown/ Accessed on 12 June 2018

  93. Otevřená zahrada—vzdělávací a poradenské centrum. [Online]. Available from: http://www.otevrenazahrada.cz/energie Accessed on 12 June 2018

  94. Svobodová K (2018) Stanovení ochlazovací funkce zelené střechy v areálu Nadace Partnerství v Brně. Bachelor thesis MENDELU

    Google Scholar 

  95. Beinhauer P (2008) Standard-Detail-System (Systémy štandardných detailov: konštrukčné detaily pre stavebné zámery s popisom částí stavebných konštrukcií a cenami). Eurostav, Bratislava. ISBN 978-80-89228-11-9

    Google Scholar 

Download references

Acknowledgements

This chapter was written within the project “Green Roofs and Facades as a Tool for Improvement of Thermal and Water Balance in Industrial Space” No. TH03030230 supported by the Technology Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Šenfeldr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šenfeldr, M., Maděra, P., Kotásková, P., Fialová, J., Kundrata, M., Rieger, V. (2020). The Green Roofs and Facades as a Tool of Climate Cooling in the Urban Environment. In: Zelenakova, M., Hlavínek, P., Negm, A. (eds) Management of Water Quality and Quantity. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-18359-2_3

Download citation

Publish with us

Policies and ethics