Skip to main content

Biogas Production from Kitchen Wastes: Special Focus on Kitchen and Household Wastes in Egypt

  • Chapter
  • First Online:
Waste Management in MENA Regions

Part of the book series: Springer Water ((SPWA))

Abstract

Pollutants are released into the atmosphere due to production and consumption energy especially from fossil. However, not only the environmental concerns but also the increase in energy demand promotes the researchers to develop new and current energy alternatives that cause zero- or low-negative environmental impact. Anaerobic fermentation can be used for the treatment of organic wastes (OW) such as kitchen waste, municipal solid waste, industrial organic waste, animal manure, and agricultural residues. The fuel produced from anaerobic digestion is environmental friendly. Kitchen wastes (KWs) are easily biodegradable organic material with high moisture, carbohydrate, lipid, and protein. The use of KW only in anaerobic digestion reduces the activity of methanogenic bacteria as a result of rapid accumulation of volatile fatty acids followed by a pH drop in the reactor, thus, adjusting C/N by some additives to accelerate the growth of methanogens and methane formation is necessary. The favorable pH for methanogens’ growth range of 6.5 to 7.2. Furthermore, the key factors controlling the production of volatile fatty acids during fermentation for methanogenesis represented in pH, temperature, C/N ratio, and hydraulic retention time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abendroth C, Hahnke S, Simeonov C, Klocke M, Casani-Miravalls S, Ramm P, Bürger C, Luschnig O, Porcar M (2017) Microbial communities involved in biogas production exhibit high resilience to heat shocks. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.10.093

    Article  CAS  Google Scholar 

  2. Afridi ZUR, Wu J, Cao ZP, Zhang ZL, Li ZH, Poncin S, Li HZ (2017) Insight into mass transfer by convective diffusion in anaerobic granules to enhance biogas production. Biochem Eng J 127:154–160. https://doi.org/10.1016/j.bej.2017.07.012

    Article  CAS  Google Scholar 

  3. Amigun B, von Blottnitz H (2010) Capacity-cost and location-cost analyses for biogas plants in Africa. Resour Conserv Recycl 55:63–73. https://doi.org/10.1016/j.resconrec.2010.07.004

    Article  Google Scholar 

  4. Apte A, Cheernam V, Kamat M, Kamat S, Kashikar P, Jeswani H (2013) Potential of using kitchen waste in a biogas plant. Int J Environ Sci Dev 4(4)

    Google Scholar 

  5. Astals S, Ariso M, Gal A, Mata-Alvarez J (2011) Co-digestion of pig manure and glycerine: experimental and modelling study. J Environ Manage 92(4):1091–1096

    Article  CAS  Google Scholar 

  6. Bong CPC, Lim LY, Lee CT, Klemeš JJ, Ho CS, Ho WS (2018) The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—a review. J Cleaner Prod 172:1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199

    Article  CAS  Google Scholar 

  7. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40(3–4):989–995

    Article  CAS  Google Scholar 

  8. Chen C, Guo W, Ngo HH, Lee D, Tung K, Jin P, Wang J, Wu Y (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renew Energy 98:120–134. https://doi.org/10.1016/j.renene.2016.03.095

    Article  CAS  Google Scholar 

  9. Choong YY, Chou KW, Norli I (2017) Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: a critical review. Renew Sustain Energy Rev 82(3):2993–3006. http://dx.doi.org/10.1016/j.rser.2017.10.036

    Article  CAS  Google Scholar 

  10. Deepanraj B, Sivasubramanian V, Jayara S (2017) Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int J Hydrogen Energy 42:26522–26528. http://dx.doi.org/10.1016/j.ijhydene.2017.06.178

    Article  CAS  Google Scholar 

  11. Ebrahimi A, Hashemi H, Eslami H, Fallahzadeh RA, Khosravi R, Askari R, Ghahramani E (2018) Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor. J Environ Manage 206:707–714. https://doi.org/10.1016/j.jenvman.2017.10.038

    Article  CAS  Google Scholar 

  12. Feiz R, Ammenberg J (2017) Assessment of feedstocks for biogas production, part I—a multi-criteria approach. Resour Conserv Recycl 122:373–387. https://doi.org/10.1016/j.resconrec.2017.01.019

    Article  Google Scholar 

  13. Guenther-Lübbers W, Bergmann H, Theuvsen l (2016) Potential analysis of the biogas production e as measured by effects of added value and employment. J Clean Prod 129:556–564. https://doi.org/10.1016/j.jclepro.2016.03.157

    Article  Google Scholar 

  14. Hafida HS, Abdul Rahmana NA, Shaha UK, Baharuddinb AS, Ariffc AB (2017) Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew Sustain Energy Rev 74:671–686. https://doi.org/10.1016/j.rser.2017.02.071

    Article  CAS  Google Scholar 

  15. Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  CAS  Google Scholar 

  16. Huang C, Guo H, Wang C, Xiong L, Luo M, Chen X, Zhang H, Li H, Chen X (2017) Efficient continuous biogas production using lignocellulosic hydrolysates as substrate: a semi-pilot scale long-term study. Energy Convers Manag 151:53–62

    Article  CAS  Google Scholar 

  17. Jabłoński SJ, Kułażyński M, Sikora I, Łukaszewicz M (2017) The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake. J Environ Manage 203:714–719. https://doi.org/10.1016/j.jenvman.2016.06.001

    Article  CAS  Google Scholar 

  18. Karimi S, Karimi K (2018) Efficient ethanol production from kitchen and garden wastes and biogas from the residues. J Clean Prod 187(2018):37–45. https://doi.org/10.1016/j.jclepro.2018.03.172

    Article  CAS  Google Scholar 

  19. Kim MJ, Kim SH (2017). Minimization of diauxic growth lag-phase for high-efficiency biogas production. J Environ Manage 187:456e463. http://dx.doi.org/10.1016/j.jenvman.2016.11.002

    Article  CAS  Google Scholar 

  20. Lavagnolo MC, Girotto F, Hirata O, Cossu R (2017) Lab-scale co-digestion of kitchen waste and brown water for a preliminary performance evaluation of a decentralized waste and wastewater management. Waste Manag 66:155–160. https://doi.org/10.1016/j.wasman.2017.05.005

    Article  CAS  Google Scholar 

  21. Lebranchu A, Delaunay S, Marchal P, Blanchard F, Pacaud S, Fick M, Olmos E (2017) Impact of shear stress and impeller design on the production of biogas in anaerobic digesters. Biores Technol 245:1139–1147. https://doi.org/10.1016/j.biortech.2017.07.113

    Article  CAS  Google Scholar 

  22. Li YY, Jin YY (2015) Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew Energy 77:550–557

    Article  CAS  Google Scholar 

  23. Li Y, Jin Y, Li J, Li H, Yu Z (2016) Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Appl Energy 172:47–58. https://doi.org/10.1016/j.apenergy.2016.03.080

    Article  CAS  Google Scholar 

  24. Li Y, Jin Y, Li J, Li H, Yu Z, Nie Y (2017) Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 118:377–386. https://doi.org/10.1016/j.energy.2016.12.041

    Article  CAS  Google Scholar 

  25. Liu Y, Zhu Y, Jia H, Yong X, Zhang L, Zhou J, Cao Z, Kruse A, Wei P (2017) Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Biores Technol 244:445–451. https://doi.org/10.1016/j.biortech.2017.07.171

    Article  CAS  Google Scholar 

  26. Lokshina L, Vavilin V, Salminen E, Rintala J (2003) Modeling of anaerobic degradation of solid slaughterhouse waste. Appl Biochem Biotechnol 109(1):15–32

    Article  CAS  Google Scholar 

  27. Matheri AN, Ndiweni SN, Belaid M, Muzenda E, Hubert R (2017) Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew Sustain Energy Rev 80(2017):756–764. https://doi.org/10.1016/j.rser.2017.05.068

    Article  Google Scholar 

  28. Misi SN, Forster CF (2001) Batch co-digestion of multi-component agro-wastes. Biores Technol 80(1):19–28

    Article  CAS  Google Scholar 

  29. Moreno VC, Papasidero S, Scarponi GE, Guglielmi D, Cozzani V (2016) Analysis of accidents in biogas production and upgrading. Renew Energy 96(2016):1127–1134. https://doi.org/10.1016/j.renene.2015.10.017

    Article  CAS  Google Scholar 

  30. Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 2017(2017):2370927. https://doi.org/10.1155/2017/2370927

    Article  CAS  Google Scholar 

  31. Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Biores Technol 224(2017):13–24. https://doi.org/10.1016/j.biortech.2016.11.083

    Article  CAS  Google Scholar 

  32. Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2017) Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production. Renew Energy 107:597–603

    Article  Google Scholar 

  33. Pham CH, Saggar S, Vu CC, Tate KR, Tran TTT, Luu TT, Ha HT, Nguyen HLT, Sommer SG (2017) Biogas production from steer manures in Vietnam: effects of feed supplements and tannin contents. Waste Manag 69:492–497. https://doi.org/10.1016/j.wasman.2017.08.002

    Article  CAS  Google Scholar 

  34. Rajendran K, Aslanzadeh S, Taherzadeh MJ (2012) Household biogas digesters—a review. Energies 5:2911–2942. https://doi.org/10.3390/en5082911

    Article  CAS  Google Scholar 

  35. Reddy SN, Satyanarayana SV, Sudha G (2017) Bio gas generation from biodegradable kitchen waste. Int J Environ Agric Biotech (IJEAB) 2(2). http://dx.doi.org/10.22161/ijeab/2.2.15. ISSN: 2456-1878

  36. Sahu N, Sharma A, Mishra P, Chandrashekhar B, Sharma G, Kapley A, Pandey RA (2017a) Evaluation of biogas production potential of kitchen waste in the presence of spices. Waste Manag 70:236–246. https://doi.org/10.1016/j.wasman.2017.08.045

    Article  CAS  Google Scholar 

  37. Sahu N, Deshmukh S, Chandrashekhar B, Sharma G, Kapley A, Pandey RA (2017b) Optimization of hydrolysis conditions for minimizing ammonia accumulation in two-stage biogas production process using kitchen waste for sustainable process development. J Environ Chem Eng 5:2378–2387. https://doi.org/10.1016/j.jece.2017.04.045

    Article  CAS  Google Scholar 

  38. Shane A, Gheewala SH (2017) Missed environmental benefits of biogas production in Zambia. J Clean Prod 142(2017):1200–1209. https://doi.org/10.1016/j.jclepro.2016.07.060

    Article  CAS  Google Scholar 

  39. Skovsgaard L, Jacobsen HK (2017) Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 101:77–89

    Article  Google Scholar 

  40. Stefaniuk M, Oleszczuk P, Bartmi´nski P (2016) Chemical and ecotoxicological evaluation of biochar produced from residues of biogas production. J Hazard Mater 318:417–424. https://doi.org/10.1016/j.jhazmat.2016.06.013

    Article  CAS  Google Scholar 

  41. Sun M, Fan X, Zhao X, Fu S, He S, Manasa MRK, Guo R (2017) Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure. Biores Technol 235(2017):292–300. https://doi.org/10.1016/j.biortech.2017.03.075

    Article  CAS  Google Scholar 

  42. Tonrangklang P, Therdyothin A, Preechawuttipong I (2017) Overview of biogas production potential from industry sector to produce compressed bio-methane gas in Thailand. In: 2017 International conference on alternative energy in developing countries and emerging economies 2017 AEDCEE, 25–26 May 2017, Bangkok, Thailand. Energy Procedia 138:919–924. https://doi.org/10.1016/j.egypro.2017.10.140

    Article  Google Scholar 

  43. Wang Y, Zang B, Li L, Liu Y (2016) Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation. Waste Manag 53:62–67. https://doi.org/10.1016/j.wasman.2016.04.018

    Article  CAS  Google Scholar 

  44. Yadav D, Barbora L, Bora D, Mitra S, Rangan L, Mahanta P (2017) An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int Biodeterior Biodegradation 119(2017):253–259. https://doi.org/10.1016/j.ibiod.2016.09.007

    Article  CAS  Google Scholar 

  45. Ye J, Li D, Sun Y, Wang G, Yuana Z, Zhena F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33:2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014

    Article  CAS  Google Scholar 

  46. Zhang X, Yan J, Li H, Chekani S, Liu L (2015) Investigation of thermal integration between biogas production and upgrading q. Energy Convers Manag 102:131–139. https://doi.org/10.1016/j.enconman.2015.03.023

    Article  CAS  Google Scholar 

  47. Zhang G, Li Y, Dai YJ, Wang RZ (2016) Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Appl Therm Eng 109:423–431. https://doi.org/10.1016/j.applthermaleng.2016.08.092

    Article  Google Scholar 

  48. Zhang D, Duan N, Tiana H, Lina C, Zhang Y, Liu Z (2018a) Comparing two enhancing methods for improving kitchen waste anaerobic digestion: Bentonite addition and autoclaved de-oiling pretreatment. In: Process safety and environmental protection, vol 1188,p 9. http://dx.doi.org/10.1016/j.psep.2017.09.011

    Article  CAS  Google Scholar 

  49. Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q, Han F (2018b) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy 115:276–287. https://doi.org/10.1016/j.renene.2017.08.034

    Article  CAS  Google Scholar 

  50. Zhao M, Ruan W (2013) Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers Manag 75:21–24. https://doi.org/10.1016/j.enconm

    Article  CAS  Google Scholar 

  51. How to make biogas plant, anaerobic digester experiment. https://paksc.org/pk/diy-projects/764-biogas-plant-experiment/. Accessed 15 Nov 2018

  52. http://www.sis.gov.eg. Accessed 15 Nov 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Elbasiouny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostafa, A.A., Elbanna, B.A., Elbehiry, F., Elbasiouny, H. (2020). Biogas Production from Kitchen Wastes: Special Focus on Kitchen and Household Wastes in Egypt. In: Negm, A., Shareef, N. (eds) Waste Management in MENA Regions. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-18350-9_7

Download citation

Publish with us

Policies and ethics