Skip to main content

Artificial Retina: A Future Cellular-Resolution Brain-Machine Interface

  • Chapter
  • First Online:
NANO-CHIPS 2030

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Brain-machine interfaces (BMIs) of the future will be used to treat diverse neurological disorders and augment human capabilities. However, to realize this futuristic promise will require a major leap forward in how electronic devices interact with the nervous system. Current BMIs provide coarse communication with the target neural circuitry, because they fail to respect its cellular and cell-type specificity. Instead, they indiscriminately activate or record many cells at the same time and provide only partial restoration of lost abilities. A future BMI that may pave the path forward is an artificial retina—a device that can restore vision to people blinded by retinal degeneration. Because the retina is relatively well understood and easily accessible, it is an ideal neural circuit in which to develop a BMI that can approach or exceed the performance of the biological circuitry. This chapter summarizes the basic neuroscience of vision, identifies the requirements for an effective retinal interface, and describes some of the necessary circuits and systems. Based on these ideas and the lessons from first-generation retinal prostheses, a novel neuroengineering approach is proposed: the first BMI that will interact with neural circuitry at cellular and cell-type resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.W. Slutzky, Brain-machine interfaces: powerful tools for clinical treatment and neuroscientific investigations. Neuroscientist 25, 139–154 (2019)

    Article  Google Scholar 

  2. M.A. Lebedev, M.A.L. Nicolelis, Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017)

    Article  Google Scholar 

  3. A.H. Marblestone, B.M. Zamft, Y.G. Maguire, M.G. Shapiro, T.R. Cybulski, J.I. Glaser, D. Amodei, P.B. Stranges, R. Kalhor, D.A. Dalrymple, D. Seo, E. Alon, M.M. Maharbiz, J.M. Carmena, J.M. Rabaey, E.S. Boyden, G.M. Church, K.P. Kording, Physical principles for scalable neural recording. Front. Comput. Neurosci. 7, 137 (2013)

    Article  Google Scholar 

  4. G.W. Fraser, S.M. Chase, A. Whitford, A.B. Schwartz, Control of a brain–computer interface without spike sorting. J. Neural Eng. 6, 055004 (2009)

    Article  ADS  Google Scholar 

  5. C.A. Chestek, V. Gilja, P. Nuyujukian, J.D. Foster, J.M. Fan, M.T. Kaufman, M.M. Churchland, Z. Rivera-Alvidrez, J.P. Cunningham, S.I. Ryu, K.V. Shenoy, Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng. 8, 045005 (2011)

    Article  ADS  Google Scholar 

  6. B.P. Christie, D.M. Tat, Z.T. Irwin, V. Gilja, P. Nuyujukian, J.D. Foster, S.I. Ryu, K.V. Shenoy, D.E. Thompson, C.A. Chestek, Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance. J. Neural Eng. 12, 016009 (2015)

    Article  ADS  Google Scholar 

  7. J. Li, Z. Li, Sums of spike waveform features for motor decoding. Front. Neurosci. 11, 406 (2017)

    Article  Google Scholar 

  8. E.M. Trautmann, S.D. Stavisky, S. Lahiri, K.C. Ames, M.T. Kaufman, D.J. O’Shea, S. Vyas, X. Sun, S.I. Ryu, S. Ganguli, K.V. Shenoy, Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019)

    Article  Google Scholar 

  9. N. Even-Chen, D.G. Muratore, S.D. Stavisky, L.R. Hochberg, J.M. Henderson, B. Murmann, K.V. Shenoy, Motor intracortical interface design opportunities for an order of magnitude power saving. Nat. Biomed. Eng. (2020) (In Press)

    Google Scholar 

  10. G.A. Goetz, D.V. Palanker, Electronic approaches to restoration of sight. Rep. Prog. Phys. 79, 096701 (2016)

    Article  ADS  Google Scholar 

  11. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science (McGraw-Hill, New York, 2012)

    Google Scholar 

  12. C.E. Schoonover, Portraits of the Mind: Visualizing the Brain from Antiquity to the 21st Century. Abrams (2010)

    Google Scholar 

  13. L.E. Grosberg, K. Ganesan, G.A. Goetz, S.S. Madugula, N. Bhaskhar, V. Fan, P. Li, P. Hottowy, W. Dabrowski, A. Sher, A.M. Litke, S. Mitra, E.J. Chichilnisky, Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J. Neurophysiol. 118, 1457–1471 (2017)

    Article  Google Scholar 

  14. A.L. Yarbus, Eye Movements and Vision (Plenum, New York, 1967)

    Book  Google Scholar 

  15. R.W. Rodieck, The First Steps in Seeing (Sinauer, Sunderland, 1998)

    Google Scholar 

  16. B.A. Wandell, Foundations of Vision (Sinauer, Sunderland, 1995)

    Google Scholar 

  17. B. Roska, M. Meister, The retina dissects the visual scene into distinct features, in The New Visual Neurosciences (2014), pp. 163–182

    Google Scholar 

  18. T. Gollisch, M. Meister, Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010)

    Article  Google Scholar 

  19. M. Beyeler, A. Rokem, G.M. Boynton, I. Fine, Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J. Neural Eng. 14, 051003 (2017)

    Article  ADS  Google Scholar 

  20. P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001)

    Google Scholar 

  21. H.G. Rey, C. Pedreira, R. Quian Quiroga, Past, present and future of spike sorting techniques. Brain Res. Bull. 119, 106–117 (2015)

    Article  Google Scholar 

  22. J.E. Chung, J.F. Magland, A.H. Barnett, V.M. Tolosa, A.C. Tooker, K.Y. Lee, K.G. Shah, S.H. Felix, L.M. Frank, L.F. Greengard, A fully automated approach to spike sorting. Neuron 95, 1381–1394.e6 (2017)

    Article  Google Scholar 

  23. D. Carlson, L. Carin, Continuing progress of spike sorting in the era of big data. Curr. Opin. Neurobiol. 55, 90–96 (2019)

    Article  Google Scholar 

  24. J.F. Fohlmeister, P.A. Coleman, R.F. Miller, Modeling the repetitive firing of retinal ganglion cells. Brain Res. 510, 343–345 (1990)

    Article  Google Scholar 

  25. D. Boinagrov, J. Loudin, D. Palanker, Strength-duration relationship for extracellular neural stimulation: numerical and analytical models. J. Neurophysiol. 104, 2236–2248 (2010)

    Article  Google Scholar 

  26. G.J. Chader, J. Weiland, M.S. Humayun, Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog. Brain Res. 175, 317–332 (2009)

    Article  Google Scholar 

  27. E. Zrenner, Fighting blindness with microelectronics. Sci. Transl. Med. 5, 210ps16 (2013)

    Article  Google Scholar 

  28. A.T. Chuang, C.E. Margo, P.B. Greenberg, Retinal implants: a systematic review. Br. J. Ophthalmol. 98, 852–856 (2014)

    Article  Google Scholar 

  29. Y.H.-L. Luo, L. da Cruz, A review and update on the current status of retinal prostheses (bionic eye). Br. Med. Bull. 109, 31–44 (2014)

    Article  Google Scholar 

  30. K. Grifantini, Aiding the Eye, Watching the Brain: James Weiland, IEEE Fellow, explores the unique challenges of retinal prostheses. IEEE Pulse 8, 39–41 (2017)

    Article  Google Scholar 

  31. M.S. Humayun, E. de Juan, G. Dagnelie Jr., The bionic eye: a quarter century of retinal prosthesis research and development. Ophthalmology 123, S89–S97 (2016)

    Article  Google Scholar 

  32. D. Nanduri, M.S. Humayun, R.J. Greenberg, M.J. McMahon, J.D. Weiland, Retinal prosthesis phosphene shape analysis, in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2008), pp. 1785–1788

    Google Scholar 

  33. C. de Balthasar, S. Patel, A. Roy, R. Freda, S. Greenwald, A. Horsager, M. Mahadevappa, D. Yanai, M.J. McMahon, M.S. Humayun, R.J. Greenberg, J.D. Weiland, I. Fine, Factors affecting perceptual thresholds in epiretinal prostheses. Invest. Ophthalmol. Vis. Sci. 49, 2303–2314 (2008)

    Article  Google Scholar 

  34. A. Caspi, J.D. Dorn, K.H. McClure, M.S. Humayun, R.J. Greenberg, M.J. McMahon, Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch. Ophthalmol. 127, 398–401 (2009)

    Article  Google Scholar 

  35. R.J. Jensen, J.F. Rizzo 3rd, O.R. Ziv, A. Grumet, J. Wyatt, Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. Invest. Ophthalmol. Vis. Sci. 44, 3533–3543 (2003)

    Article  Google Scholar 

  36. A. Butterwick, A. Vankov, P. Huie, Y. Freyvert, D. Palanker, Tissue damage by pulsed electrical stimulation. IEEE Trans. Biomed. Eng. 54, 2261–2267 (2007)

    Article  Google Scholar 

  37. S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  38. D.R. Merrill, M. Bikson, J.G.R. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005)

    Article  Google Scholar 

  39. L.S. Robblee, T.L. Rose, Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies (1990), pp. 25–66

    Google Scholar 

  40. A. Horsager, S.H. Greenwald, J.D. Weiland, M.S. Humayun, R.J. Greenberg, M.J. McMahon, G.M. Boynton, I. Fine, Predicting visual sensitivity in retinal prosthesis patients. Invest. Ophthalmol. Vis. Sci. 50, 1483–1491 (2009)

    Article  Google Scholar 

  41. J.-H. Jung, D. Aloni, Y. Yitzhaky, E. Peli, Active confocal imaging for visual prostheses. Vis. Res. 111, 182–196 (2015)

    Article  Google Scholar 

  42. E. Zrenner, K.U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.-P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, R. Wilke, Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B Biol. Sci. 278, 1489–1497 (2011)

    Article  Google Scholar 

  43. H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, D. Palanker, Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015)

    Article  Google Scholar 

  44. L.H. Jepson, P. Hottowy, G.A. Weiner, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, High-fidelity reproduction of spatiotemporal visual signals for retinal prosthesis. Neuron 83, 87–92 (2014)

    Article  Google Scholar 

  45. C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosci. 28, 4446–4456 (2008)

    Article  Google Scholar 

  46. L.H. Jepson, P. Hottowy, K. Mathieson, D.E. Gunning, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J. Neurosci. 33, 7194–7205 (2013)

    Article  Google Scholar 

  47. A.M. Litke, N. Bezayiff, E.J. Chichilnisky, W. Cunningham, W. Dabrowski, A.A. Grillo, M. Grivich, P. Grybos, P. Hottowy, S. Kachiguine, R.S. Kalmar, K. Mathieson, D. Petrusca, M. Rahman, A. Sher, What does the eye tell the brain?: Development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004)

    Article  ADS  Google Scholar 

  48. E.J. Chichilnisky, R.S. Kalmar, Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22, 2737–2747 (2002)

    Article  Google Scholar 

  49. E.S. Frechette, A. Sher, M.I. Grivich, D. Petrusca, A.M. Litke, E.J. Chichilnisky, Fidelity of the ensemble code for visual motion in primate retina. J. Neurophysiol. 94, 119–135 (2005)

    Article  Google Scholar 

  50. G.D. Field, J.L. Gauthier, A. Sher, M. Greschner, T.A. Machado, L.H. Jepson, J. Shlens, D.E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A.M. Litke, E.J. Chichilnisky, Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673–677 (2010)

    Article  ADS  Google Scholar 

  51. V.H. Fan, L.E. Grosberg, S.S. Madugula, P. Hottowy, W. Dabrowski, A. Sher, A.M. Litke, E.J. Chichilnisky, Epiretinal stimulation with local returns enhances selectivity at cellular resolution. J. Neural Eng. 16, 025001 (2019)

    Article  ADS  Google Scholar 

  52. L.H. Jepson, P. Hottowy, K. Mathieson, D.E. Gunning, W. Dąbrowski, A.M. Litke, E.J. Chichilnisky, Spatially patterned electrical stimulation to enhance resolution of retinal prostheses. J. Neurosci. 34, 4871–4881 (2014)

    Article  Google Scholar 

  53. C.E. Rhoades, N.P. Shah, M.B. Manookin, N. Brackbill, A. Kling, G. Goetz, A. Sher, A.M. Litke, E.J. Chichilnisky, Unusual physiological properties of smooth monostratified ganglion cell types in primate retina. Neuron 103, 658–672.e6 (2019)

    Article  Google Scholar 

  54. Stanford Artificial Retina Project. http://med.stanford.edu/artificial-retina.html

  55. E. Richard, G.A. Goetz, E.J. Chichilnisky, Recognizing retinal ganglion cells in the dark, in Advances in Neural Information Processing Systems (2015), pp. 2476–2484

    Google Scholar 

  56. V. Karkare, S. Gibson, D. Marković, A 75-µW, 16-channel neural spike-sorting processor with unsupervised clustering. IEEE J. Solid-State Circuits 48, 2230–2238 (2013)

    Article  ADS  Google Scholar 

  57. M. Pagin, M. Ortmanns, A neural data lossless compression scheme based on spatial and temporal prediction, in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2017), pp. 1–4

    Google Scholar 

  58. C. Aprile, K. Ture, L. Baldassarre, M. Shoaran, G. Yilmaz, F. Maloberti, C. Dehollain, Y. Leblebici, V. Cevher, Adaptive learning-based compressive sampling for low-power wireless implants. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 3929–3941 (2018)

    Article  Google Scholar 

  59. T. Wu, W. Zhao, E. Keefer, Z. Yang, Deep compressive autoencoder for action potential compression in large-scale neural recording. J. Neural Eng. 15, 066019 (2018)

    Article  ADS  Google Scholar 

  60. T. Okazawa, I. Akita, A time-domain analog spatial compressed sensing encoder for multi-channel neural recording. Sensors 18, 184 (2018). https://doi.org/10.3390/s18010184

    Article  Google Scholar 

  61. V. Majidzadeh, A. Schmid, Y. Leblebici, A 16-channel, 359 μW, parallel neural recording system using Walsh-Hadamard coding, in Proceedings of the IEEE 2013 Custom Integrated Circuits Conference (2013), pp. 1–4

    Google Scholar 

  62. D. Tsai, R. Yuste, K.L. Shepard, Statistically reconstructed multiplexing for very dense, high-channel-count acquisition systems. IEEE Trans. Biomed. Circuits Syst. 12, 13–23 (2018)

    Article  Google Scholar 

  63. M. Sharma, A.T. Gardner, H.J. Strathman, D.J. Warren, J. Silver, R.M. Walker, Acquisition of neural action potentials using rapid multiplexing directly at the electrodes. Micromachines (2018). https://doi.org/10.3390/mi9100477

    Article  Google Scholar 

  64. D.G. Muratore, P. Tandon, M. Wootters, E.J. Chichilnisky, S. Mitra, B. Murmann, A data-compressive wired-or readout for massively parallel neural recording. IEEE Trans. Biomed. Circuits Syst. 13, 1128–1140 (2019)

    Google Scholar 

  65. N.P. Shah, S. Madugula, L. Grosberg, G. Mena, P. Tandon, P. Hottowy, A. Sher, A. Litke, S. Mitra, E.J. Chichilnisky, Optimization of electrical stimulation for a high-fidelity artificial retina, in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) (2019)

    Google Scholar 

  66. A. Zhou, B.C. Johnson, R. Muller, Toward true closed-loop neuromodulation: artifact-free recording during stimulation. Curr. Opin. Neurobiol. 50, 119–127 (2018)

    Article  Google Scholar 

  67. N.P. Shah, S. Madugula, P. Hottowy, A. Sher, A. Litke, L. Paninski, E.J. Chichilnisky, Efficient characterization of electrically evoked responses for neural interfaces, in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marty Breidenbach, Ruwan Silva, Stephen Weinreich, Matthias Kuhl, Daniel Palanker, Nishal Shah and the Stanford Artificial Retina Group [54] for useful discussions and comments, and Peter Li, Chris Sekirnjak, and Nora Brackbill for figure contributions. DM, EJC and the Stanford Artificial Retina Project are funded by the Wu Tsai Neurosciences Institute. EJC is funded by NEI grant EY021271 and a Stein Innovation Award from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante G. Muratore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muratore, D.G., Chichilnisky, E.J. (2020). Artificial Retina: A Future Cellular-Resolution Brain-Machine Interface. In: Murmann, B., Hoefflinger, B. (eds) NANO-CHIPS 2030. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-18338-7_24

Download citation

Publish with us

Policies and ethics