Skip to main content

Ecosystem-Based Economic Modelers of Climate Change

  • Chapter
  • First Online:
The Economics of Global Allocations of the Green Climate Fund
  • 385 Accesses

Abstract

This chapter provides a review and discussions of the models of ecosystem changes induced by climate change as well as the ecosystem-based economic impact models. First, the global land cover database for climate studies constructed by the National Aeronautics and Space Administration (NASA) team and other satellite-based ecosystem data are explained. The land cover data are illustrated by the South American land cover map. Second, the Agro-Ecological Zone (AEZ) classification for suitability of crop agriculture developed by the international agricultural organizations is explained. The distributions of the AEZs across the African continent are illustrated. This chapter then critically reviews the ecosystem-based economic impact studies that rely on the AEZ methodology. The fundamental drawbacks of the AEZ-based economic impact methodology are highlighted through the methodology’s failure of identification of agricultural activities in each AEZ as well as the failure to capture behavioral responses such as selection, diversification, and integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams R, McCarl BA, Segerson K, Rosenzweig C, Bryant K, Dixon BL, Conner R, Evenson RE, Ojima D (1999) The economic effects of climate change on US agriculture. In: Mendelsohn R, Neumann J (eds) The impact of climate change on the United States economy. Cambridge University Press, Cambridge

    Google Scholar 

  • Baethgen WE (1997) Vulnerability of agricultural sector of Latin America to climate change. Clim Res 9:1–7

    Article  Google Scholar 

  • Crowther TW, Glick HB, Covey KR et al (2015) Mapping tree density at a global scale. Nature 525:201–205

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Deschenes O, Greenstone M (2007) The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Am Econ Rev 97:354–385

    Article  Google Scholar 

  • Dudal R (1980) Soil-related constraints to agricultural development in the tropics. International Rice Research Institute, Los Banos

    Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML et al (eds) Climate change 2007: Impacts, adaptation and vulnerability. The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • FAO (2005) Global agro-ecological assessment for agriculture in the twenty-first century (CD-ROM), FAO Land and Water Digital Media Series. FAO, Rome

    Google Scholar 

  • FAO/International Institute of Applied Systems Analysis (IIASA) (2012) Global agro-ecological zones (GAEZ v3.0): Model documentation. FAO, Rome

    Google Scholar 

  • Fischer G, Frohberg K, Keyzer MA, Parikh KS (1988) Linked national models: A tool for international policy analysis. Kluwer Academic, Dordrecht

    Google Scholar 

  • Fischer G, Shah M, Tubiello FN, van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos Trans R Soc B 360:2067–2083

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML et al (eds) Climate Change 2007: Impacts, adaptation and vulnerability. The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Food and Agriculture Organization (FAO) (1978) Report on agro-ecological zones vol. 1: Methodology and results for Africa. FAO, Rome

    Google Scholar 

  • Gitay H, Brwon S, Easterling W, Jallow B (2001) Ecosystems and their goods and services. In: McCarthy JJ et al (eds) Climate change 2001: Impacts, adaptations, and vulnerabilities. Cambridge University Press, Cambridge

    Google Scholar 

  • Green Climate Fund (GCF) (2011) Governing instrument for the green climate fund. GCF, Songdo City

    Google Scholar 

  • Green Climate Fund (GCF) (2018a) Annex III: Investment framework. GCF, Songdo City

    Google Scholar 

  • Green Climate Fund (GCF) (2018b) Annex IX: Results management framework. GCF, Songdo City

    Google Scholar 

  • Green Climate Fund (GCF) (2018c) Projects + programmes. GCF, Songdo City. Accessed from https://www.greenclimate.fund/what-we-do/projects-programmes

    Google Scholar 

  • Groves T (1973) Incentives in teams. Econometrica 41:617–643

    Article  Google Scholar 

  • Hart O, Holmstrom B (1987) The theory of contracts. In: Bewley T (ed) Advances in economics and econometrics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hillel D, Rosenzweig C (eds) (2010) Handbook of climate change and agroecosystems: Impacts, adaptation and mitigation. Imperial College Press, London

    Google Scholar 

  • Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990) Climate change: The IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • International Institute of Tropical Agriculture (IITA) (2000) Delivering the African development potential: The IITA vision. IITA, Nigeria

    Google Scholar 

  • Kurukulasuriya P, Mendelsohn R, Hassan R, Benhin J, Diop M, Eid HM, Fosu KY, Gbetibouo G, Jain S, Mahamadou A, El-Marsafawy S, Ouda S, Ouedraogo M, Sène I, Maddision D, Seo SN, Dinar A (2006) Will African agriculture survive climate change? World Bank Econ Rev 20:367–388

    Article  Google Scholar 

  • Laffont JJ, Martimort D (2002) The theory of incentives: The principal-agent model. Princeton University Press, Princeton

    Google Scholar 

  • Mata LJ, Campos M (2001) Latin America. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: Impacts, adaptation, and vulnerability. The third assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthews E (1983) Global vegetation and land use: new high-resolution data bases for climatestudies. J Climatol Appl Meteorol 22(3):474–487

    Article  Google Scholar 

  • National Aeronautics and Space Administration (NASA) (2018) Missions: Earth Observing System (EOS). NASA, Washington, DC. Accessed from https://eospso.nasa.gov/mission-category/3

    Google Scholar 

  • National Research Council (NRC) (2013) Abrupt impacts of climate change: Anticipating surprises. Committee on understanding and monitoring abrupt climate change and its impacts. The National Academies Press, Washington, DC

    Google Scholar 

  • Nordhaus W (2006) Geography and macroeconomics: new data and new findings. Proc Natl Acad Sci U S A 103(10):3510–3517

    Article  Google Scholar 

  • Nordhaus WD (2008) A question of balance: Weighing the options on global warming policies. Yale University Press, New Haven

    Google Scholar 

  • Parry ML, Rosenzweig CP, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socioeconomic scenarios. Glob Environ Chang 14:53–67

    Article  Google Scholar 

  • Peters CM, Gentry AW, Mendelsohn RO (1989) Valuation of an Amazonian rainforest. Nature 339(6227):655–656

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Caceres B, Ceballos JL, Basantes R, Buille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Menegoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  • Rosenzweig C, Parry M (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Rosenzweig C, Allen LH, Harper LA, Hollinger SE, Jones JW (eds) (1995) Climate change and agriculture: Analysis of potential international impacts. American Society of Agronomy (ASA) Special Publication No. 59. ASA, Madison

    Google Scholar 

  • Schenkler W, Hanemann M, Fisher A (2006) The impact of global warming on U.S. agriculture: An econometric analysis of optimal growing conditions. Rev Econ Stat 88(1):113–125

    Google Scholar 

  • Schlenker W, Roberts M (2009) Nonlinear temperature effects indicate severe damages to crop yields under climate change. Proc Natl Acad Sci USA 106(37):15594–15598

    Article  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: An analysis of global change. Academic, San Diego

    Google Scholar 

  • Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, Galetti M, Davies AB, Goetz SJ (2018) Animals and the zoogeochemistry of the carbon cycle. Science 362. https://doi.org/10.1126/science.aar3213

    Article  Google Scholar 

  • Seo SN (2010a) A microeconometric analysis of adapting portfolios to climate change: Adoption of agricultural systems in Latin America. Appl Econ Perspect Policy 32:489–514

    Article  Google Scholar 

  • Seo SN (2010b) Managing forests, livestock, and crops under global warming: A micro-econometric analysis of land use changes in Africa. Aust J Agric Resour Econ 54:239–258

    Article  Google Scholar 

  • Seo SN (2011) A geographically scaled analysis of adaptation to climate change with spatial models using agricultural systems in Africa. J Agric Sci 149:437–449

    Article  Google Scholar 

  • Seo SN (2012a) Adapting natural resource enterprises under global warming in South America: A mixed logit analysis. Economia: J Lat Am Caribb Econ Assoc 12:111–135

    Google Scholar 

  • Seo SN (2012b) Adaptation behaviors across ecosystems under global warming: a spatial microeconometric model of the rural economy in South America. Pap Reg Sci 91:849–871

    Article  Google Scholar 

  • Seo SN (2012c) Decision making under climate risks: An analysis of sub-Saharan farmers’ adaptation behaviors. Weather Clim Soc 4:285–299

    Article  Google Scholar 

  • Seo SN (2013) Refining spatial resolution and spillovers of a microeconometric model of adapting portfolios to climate change. Mitig Adapt Strat Glob Chang 18:1019–1034

    Article  Google Scholar 

  • Seo SN (2014a) Evaluation of agro-ecological zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa. Eur J Agron 52:157–165

    Article  Google Scholar 

  • Seo SN (2014b) Coupling climate risks, eco-systems, anthropogenic decisions using South American and Sub-Saharan farming activities. Meteorol Appl 21:848–858

    Article  Google Scholar 

  • Seo SN (2014c) Adapting sensibly when global warming turns the field brown or blue: A comment on the 2014 IPCC Report. Econ Aff 34:399–401

    Article  Google Scholar 

  • Seo SN (2015a) Micro-behavioral economics of global warming: Modeling adaptation strategies in agricultural and natural resource enterprises. Springer, Cham

    Google Scholar 

  • Seo SN (2015b) Adapting to extreme climates: raising animals in hot and arid ecosystems in Australia. Int J Biometeorol 59:541–550

    Article  Google Scholar 

  • Seo SN (2015c) Helping low-latitude, poor countries with climate change. Regulation. Winter 2015–2016: 6–8

    Google Scholar 

  • Seo SN (2016a) Microbehavioral econometric methods: Theories, models, and applications for the study of environmental and natural resources. Academic, Amsterdam

    Google Scholar 

  • Seo SN (2016b) Modeling farmer adaptations to climate change in South America: A micro-behavioral economic perspective. Environ Ecol Stat 23:1–21

    Article  Google Scholar 

  • Seo SN (2016c) Untold tales of goats in deadly Indian monsoons: Adapt or rain-retreat under global warming? J Extrem Events. https://doi.org/10.1142/S2345737616500019

    Article  Google Scholar 

  • Seo SN (2016d) The micro-behavioral framework for estimating total damage of global warming on natural resource enterprises with full adaptations. J Agric Biol Environ Stat 21:328–347

    Article  Google Scholar 

  • Seo SN (2017) The behavioral economics of climate change: adaptation behaviors, global public goods, breakthrough technologies, and policy-making. Academic, Amsterdam

    Google Scholar 

  • Seo SN, Mendelsohn R (2008a) A Ricardian analysis of the impact of climate change impacts on South American farms. Chilean J Agric Res 68:69–79

    Google Scholar 

  • Seo SN, Mendelsohn R (2008b) Measuring impacts and adaptations to climate change: A structural Ricardian model of African livestock management. Agric Econ 38:151–165

    Google Scholar 

  • Seo SN, Mendelsohn R (2008c) An analysis of crop choice: Adapting to climate change in South American farms. Ecol Econ 67:109–116

    Article  Google Scholar 

  • Seo SN, Mendelsohn R, Dinar A, Hassan R, Kurukulasuriya P (2008) Differential adaptation strategies of African cropland across Agro-Ecological Zones. World Bank Policy Research Working Paper 4601. World Bank, Washington, DC

    Google Scholar 

  • Seo SN, Mendelsohn R, Dinar A, Hassan R, Kurukulasuriya P (2009) A Ricardian analysis of the distribution of climate change impacts on agriculture across agro-ecological zones in Africa. Environ Resour Econ 43:313–332

    Article  Google Scholar 

  • Seo SN, McCarl B, Mendelsohn R (2010) From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecol Econ 69:2486–2494

    Article  Google Scholar 

  • Steiger C (2006) Modern beef production in Brazil and Argentina. Choices 21:105–110

    Google Scholar 

  • Thomas N, Nigam S (2018) Twentieth-century climate change over Africa: Seasonal hydroclimate trends and Sahara Desert expansion. J Clim 39:3349–3370

    Article  Google Scholar 

  • Titley DW, Hegerl G, Jacobs KL, Mote PW, Paciorek CJ, Shepherd JM, Shepherd TG, Sobel AH, Walsh J, Zwiers FW, Thomas K, Everett L, Purcell A, Gaskins R, Markovich E (2016) Attribution of extreme weather events in the context of climate change. The national academies of sciences, engineering, and medicine. The National Academies Press, Washington, DC

    Google Scholar 

  • Tsuji GY, Uehara G, Balas S (eds) (1994) DSSAT v3, volumes 1, 2 and 3. International Benchmark Sites Network for Agrotechnology Transfer, University of Hawaii, Hawaii, Honolulu, Hawaii

    Google Scholar 

  • Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply: a comment on “Food for Thought …” by Long et al., Science 312:1918–1921, 2006. Eur J Agron 26:215–223

    Article  Google Scholar 

  • UNESCO (1973) International classification and mapping of vegetation. UNESCO, Paris

    Google Scholar 

  • Vedeld P, Angelsen A, Bojø J, Sjaastad E, Kobugabe GK (2007) Forest environmental incomes and the rural poor. Forest Policy Econ 9:869–879

    Article  Google Scholar 

  • World Bank (2008) World development report 2008: agriculture for development. World Bank, Washington, DC

    Book  Google Scholar 

  • Williams JR, Renard KG, Dyke PT (1984) EPIC—a new model for assessing erosion’s effect on soil productivity. J Soil Water Conserv 8:381–383

    Google Scholar 

  • World Meteorological Organization (WMO) (1985) Report of the international conference on the assessment of the role of carbon dioxide and of other greenhouse gases in climate variations and associated impacts. Villach, Austria

    Google Scholar 

  • World Resources Institute (WRI) (2005) World resources 2005: The wealth of the poor—managing ecosystems to fight poverty. WRI, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, S.N. (2019). Ecosystem-Based Economic Modelers of Climate Change. In: The Economics of Global Allocations of the Green Climate Fund. Springer, Cham. https://doi.org/10.1007/978-3-030-18274-8_6

Download citation

Publish with us

Policies and ethics