Skip to main content

Review of Energy-Economy-Environment Models

  • Chapter
  • First Online:
An Integrated Framework for Energy-Economy-Emissions Modeling

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Evaluating the complex demands on the energy system is the task of energy and economic models built to evaluate the linkages between key economic parameters and energy use. In the current context of climate change mitigation these models have been used to provide long-range forecasts of energy requirements and the consequent emissions in the future. Some of the aspects that these models try to address are (i) estimating energy consumption, considered a major area of concern; (ii) forecasting resource potential and reserves, mainly for oil and gas availability; (iii) the study of energy substitutions; and (iv) forecasting economic growth, income, and energy use and supply linkages for the future. Models that address these issues highlighted above range from simple bottom-up exercises undertaken to evaluate the economic viability of a certain fuel source to complex integrated energy planning models using multi-objective programming techniques linked with some forms of input-output and general equilibrium models. This chapter provides a review of the main trends and methodologies used in these models to analyze the issues outlined above. Some models constructed for the Indian energy and economic system are discussed in more detail. A section on the advantages as well as disadvantages of these models and their applicability to addressing the situation especially in developing economies such as India, as well as a brief introduction to the proposed integrated modeling framework, is also included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, K., Bows, A., & Mander, S. (2008). From long-term targets to cumulative emission pathways: Reframing UK climate policy. Energy Policy, 36(10), 3714–3722.

    Article  Google Scholar 

  • Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.

    Article  Google Scholar 

  • Arbex, M., & Perobelli, F. (2010). Solow meets Leontief: Economic growth and energy consumption. Energy Economics, 32(2010), 43–53.

    Article  Google Scholar 

  • Ardakani, F. J., & Ardehali, M. M. (2014). Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting. Energy Conversion and Management, 78, 745–752.

    Article  Google Scholar 

  • Badri, M. A. (1992). Analysis of demand for electricity in the United States. Energy, 17(7), 725–733.

    Article  Google Scholar 

  • Blakemore, F. B., Davies, C., & Isaac, J. G. (1994). UK energy market: An analysis of energy demands. Part I: A disaggregated sectorial approach. Applied Energy, 48(3), 261–277.

    Article  Google Scholar 

  • Bowe, T. R., Dapkus, W. D., & Patton, J. B. (1990). 5.3. Markov models. Energy, 15(7–8), 661–676.

    Article  Google Scholar 

  • Chakravarty, D., Dasgupta, S., & Roy, J. (2013). Rebound effect: How much to worry? Current Opinion in Environmental Sustainability, 5(2), 216–228.

    Article  Google Scholar 

  • Chadha, R. (1998). The impact of trade and domestic policy reforms in India: A CGE modeling approach. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Chen, Q., Kang, C., Xia, Q., & Zhong, J. (2010). Power generation expansion planning model towards low-carbon economy and its application in China. IEEE Transactions on Power Delivery, 25(2), 1117–1125.

    Article  Google Scholar 

  • Dean, A., Hoeller, P., & Organisation for Economic Co-operation and Development. Economics Dept. (1992). Costs of reducing CO 2 emissions: Evidence from six global models (Vol 2). Paris: OECD.

    Google Scholar 

  • Defourny, J., & Thorbecke, E. (1984). Structural path analysis and multiplier decomposition within a social accounting matrix framework. The Econometrics Journal, 94(373), 111–136.

    Google Scholar 

  • De Musgrove, A. R. (1984). A linear programming analysis of liquid‐fuel production and use options for Australia. Energy, 9, 281–302.

    Google Scholar 

  • Fouquet, R. (2010). The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy, 38(11), 6586–6596.

    Article  Google Scholar 

  • Galli, R. (1998). The relationship between energy intensity and income levels: forecasting long term energy demand in Asian emerging countries. The Energy Journal, 19, 85–105.

    Article  Google Scholar 

  • GoI. (2011). Planning Commissions, Government of India. Interim Report of the Expert Group on Low Carbon Strategies and Inclusive Growth. Retrieved December 6, 2015, from http://planningcommission.nic.in/reports/genrep/Inter_Exp.pdf

  • Hammond, G. P., & Mackay, R. M. (1993). Projection of UK oil and gas supply and demand to 2010. Applied Energy, 44, 93–112.

    Article  Google Scholar 

  • Harish, V. S. K. V., & Kumar, A. (2014). Demand side management in India: Action plan, policies and regulations. Renewable and Sustainable Energy Reviews, 33, 613–624.

    Article  Google Scholar 

  • Hartono, D., & Resosudarmo, B. P. (2008). The economy-wide impact of controlling energy consumption in Indonesia: An analysis using a Social Accounting Matrix framework. Energy Policy, 36(4), 1404–1419.

    Article  Google Scholar 

  • Hayden, C., & Round, J. I. (1982). Developments in social accounting methods as applied to the analysis of income distribution and employment issues. World Development, 10(6), 451–465.

    Article  Google Scholar 

  • Hsu, G. J., Leung, P., & Ching, C. T. (1988). Energy planning in Taiwan: An alternative approach using a multi-objective programming and input-output model. The Energy Journal, 9(1), 53–72.

    Article  Google Scholar 

  • Hubbert, M. K. (1975). Survey of world energy resources. Energy Sources Future, 1, 3–38.

    Google Scholar 

  • Hubacek, K., Guan, D., & Barua, A. (2007). Changing lifestyles and consumption patterns in developing countries: A scenario analysis for China and India. Futures, 39(9), 1084–1096.

    Article  Google Scholar 

  • Indo-German Centre for Sustainability. (2014). Long term energy and developmental pathways for India. Chennai: IIT Madras. Retrieved April 28, 2016, from http://www.worldenergyoutlook.org/weomodel/investmentcosts/.

  • Janvry, A. D., & Subbarao, K. (1986). Agricultural price policy and income distribution in India. In Studies in economic development and planning (Vol. 43). Oxford: Oxford University Press.

    Google Scholar 

  • Javeed Nizami, S. S. A. K., & Al-Garni, A. G. (1995). Forecasting electric energy consumption using neural networks. Energy Policy, 23, 1097–1104.

    Article  Google Scholar 

  • Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281–311.

    Article  Google Scholar 

  • Jevons, W. S. (1906). The coal question: An inquiry concerning the progress of the nation, and the probable exhaustion of our coal-mines. London: Macmillan.

    Google Scholar 

  • Joshi, B., Bhatti, T. S., & Bansal, N. K. (1992). Decentralized energy planning model for a typical village in India. Energy, 17(9), 869–876.

    Article  Google Scholar 

  • Kanitkar, T., Banerjee, R., & Jayaraman, T. (2015). Impact of economic structure on mitigation targets for developing countries. Energy for Sustainable Development, 26, 56–61.

    Article  Google Scholar 

  • Kemp, R. (1994). Technology and the transition to environmental sustainability: The problem of technological regime shifts. Futures, 26(10), 1023–1046.

    Article  Google Scholar 

  • Kojima, M., & Bacon, R. (2009). Changes in CO 2 emissions from energy use: A multicountry decomposition analysis. Washington: World Bank.

    Google Scholar 

  • Kumar, A., Bhattacharya, S. C., & Pham, H. L. (2003). Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model. Energy, 28(7), 627–654.

    Article  Google Scholar 

  • Landsberg, P. T. (1977). A simple model for solar energy economics in the UK. Energy, 2(2), 149–159.

    Article  MathSciNet  Google Scholar 

  • Lee, C.-C. (2005). Energy consumption and GDP in developing countries: a cointegrated panel analysis. Energy Economics, 27(2005), 415–427.

    Article  Google Scholar 

  • Lovins, A. B., & Parisi, A. J. (1977). Energy strategy: The road not taken? Collingwood: Friends of the Earth Australia.

    Book  Google Scholar 

  • Macal, C. M., Bragen, M. J., & Marshall, J. E. (1987). An integrated energy planning model for Illinois. Energy, 12(12), 1239–1250.

    Article  Google Scholar 

  • Manne, A. S., & Richels, R. G. (2005). MERGE: An integrated assessment model for global climate change. In Energy and Environment (pp. 175–189). New York: Springer.

    Chapter  Google Scholar 

  • Mallah, S., & Bansal, N. K. (2010). Allocation of energy resources for power generation in India: Business as usual and energy efficiency. Energy Policy, 38(2), 1059–1066.

    Article  Google Scholar 

  • Marchetti, C. (1977). Primary energy substitution models: On the interaction between energy and society. Technological Forecasting and Social Change, 10(4), 345–356.

    Article  Google Scholar 

  • MoEF. (2009). India’s GHG emissions Profile, Results of five climate modeling studies.

    Google Scholar 

  • Nag, B., & Parikh, J. (2000). Indicators of carbon emission intensity from commercial energy use in India. Energy Economics, 22(4), 441–461.

    Article  Google Scholar 

  • Nordhaus, W. D. (2008). A question of balance: Weighing the options on global warming policies. New Haven: Yale University Press.

    Google Scholar 

  • Pal, B. D., Ojha, V. P., Pohit, S., & Roy, J. (2015). An environmental computable general equilibrium (CGE) model for India. In GHG emissions and economic growth (pp. 73–93). New Delhi: Springer.

    Google Scholar 

  • Parikh, J., & Ghosh, P. P. (2009). Energy technology alternatives for India till 2030. International Journal of Energy Sector Management, 3(3), 233–250.

    Article  Google Scholar 

  • Parikh, J., Panda, M., Ganesh-Kumar, A., & Singh, V. (2009). CO2 emissions structure of Indian economy. Energy, 34(8), 1024–1031.

    Article  Google Scholar 

  • Parikh, J., & Gokarn, S. (1993). Climate change and India’s energy policy options: New perspectives on sectoral CO2 emissions and incremental costs. Global Environmental Change, 3(3), 276–291.

    Article  Google Scholar 

  • Paul, S., & Bhattacharya, R. N. (2004). CO2 emission from energy use in India: A decomposition analysis. Energy Policy, 32(5), 585–593.

    Article  Google Scholar 

  • Pradhan, B. K., & Ghosh, J. (2012). The impact of carbon taxes on growth emissions and welfare in India: A CGE analysis. New Delhi: Institute of Economic Growth, University of Delhi.

    Google Scholar 

  • Pradhan, B. K., Sahoo, A., & Saluja, M. R. (1999). A social accounting matrix for India, 1994–95. Economic and Political Weekly, 34, 3378–3394.

    Google Scholar 

  • Pradhan, B. K., Saluja, M. R., Singh, S. K., & Singh, S. K. (2006). Social accounting matrix for India: Concepts, construction and applications. New Delhi: Sage.

    Google Scholar 

  • Pieters, J. (2010). Growth and inequality in India: Analysis of an extended social accounting matrix. World Development, 38(3), 270–281.

    Article  Google Scholar 

  • Pollin, R., & Chakraborty, S. (2015). An Egalitarian Green Growth Program for India. Economic and Political Weekly, 42(2015), 38–52.

    Google Scholar 

  • Powell, M., & Round, J. I. (2000). Structure and linkage in the economy of Ghana: A SAM approach. In Economic reforms in Ghana: Miracle or mirage (pp. 68–87). Borough of Melton: James Currey.

    Google Scholar 

  • Pyatt, G., Thorbecke, E., & Emmerij, L. (1976). Planning techniques for a better future: A summary of a research project on planning for growth, redistribution and employment. Geneva: International Labour Office.

    Google Scholar 

  • Pyatt, G., & Round, J. I. (1979). Accounting and fixed price multipliers in a social accounting matrix framework. The Economic Journal, 89(356), 850–873.

    Article  Google Scholar 

  • Pyatt, G., & Round, J. I. (1985). Social accounting matrices: A basis for planning. Washington: The World Bank.

    Google Scholar 

  • Rahman, S. H. (1988). Aggregate energy demand projections for India: an econometric approach. Pacific and Asian Journal of Energy, 2, 32–46.

    Google Scholar 

  • Rai, V., & Victor, D. (2009). Climate change and the energy challenge: A pragmatic approach for India. Economic and Political Weekly, 44(31), 78–85.

    Google Scholar 

  • Rao, R. D., & Parikh, J. K. (1996). Forecast and analysis of demand for petroleum products in India. Energy Policy, 24(6), 583–592.

    Article  Google Scholar 

  • Reddy, B. S. (1995). A multilogit model for fuel shifts in the domestic sector. Energy, 20(9), 929–936.

    Article  Google Scholar 

  • Reddy, B. S., & Ray, B. K. (2010). Decomposition of energy consumption and energy intensity in Indian manufacturing industries. Energy for Sustainable Development, 14(1), 35–47.

    Article  Google Scholar 

  • Reinert, K. A., & Roland-Holst, D. W. (1997). Social accounting matrices. In Applied methods for trade policy analysis: A handbook (pp. 94–121). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Round, J. (2003). Social accounting matrices and SAM-based multiplier analysis. In The impact of economic policies on poverty and income distribution: Evaluation techniques and tools (pp. 261–276). London: Palgrave Macmillan.

    Google Scholar 

  • Roy, J. (2000). The rebound effect: Some empirical evidence from India. Energy Policy, 28(6–7), 433–438.

    Article  Google Scholar 

  • Sarkar, H., & Subbarao, S. V. (1981). a short term macro forecasting model for India—Structure and uses. Indian Economic Review, 16, 55–80.

    Google Scholar 

  • Saluja, M. R., & Yadav, B. (2006). Social accounting matrix for India 2003–04. Haryana: India Development Foundation.

    Google Scholar 

  • Smil, V. (1998). Future of oil: Trends and surprises. OPEC Review, 22(4), 253–276.

    Article  Google Scholar 

  • Stern, M. O. (1977). A policy-impact model for the supply of depletable resources with applications to crude oil. Energy, 2(3), 257–272.

    Article  Google Scholar 

  • Shukla, P. R., Dhar, S., & Mahapatra, D. (2008). Low-carbon society scenarios for India. Climate Policy, 8(sup1), S156–S176.

    Article  Google Scholar 

  • Suganthi, L., & Jagadeesan, T. R. (1992). A modified model for prediction of India’s future energy requirement. International Journal of Energy and Environment, 3(4), 371–386.

    Google Scholar 

  • Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240.

    Article  Google Scholar 

  • Suganthi, L., & Williams, A. (2000). Renewable energy in India—a modelling study for 2020–2021. Energy Policy, 28(15), 1095–1109.

    Article  Google Scholar 

  • Shukla, P. R. (2006). India’s GHG emission scenarios: Aligning development and stabilization paths. Current Science (Bangalore), 90(3), 384.

    Google Scholar 

  • Tarp, F., Roland-Holst, D., & Rand, J. (2002). Trade and income growth in Vietnam: Estimates from a new social accounting matrix. Economic Systems Research, 14(2), 157–184.

    Article  Google Scholar 

  • Taylor, L. (1990). Structuralist CGE models. Socially relevant policy analysis. Structuralist computable general equilibrium models for the developing world. Cambridge, MA: MIT Press.

    Google Scholar 

  • Taylor, L., & Taylor, L. (2009). Reconstructing macroeconomics: Structuralist proposals and critiques of the mainstream. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • TERI. (2006). National Energy Map for India: Technology vision 2030. The Energy and Resources Institute, Office of the Principal Scientific Advisor, Government of India.

    Google Scholar 

  • The Energy and Resources Institute. (2008). National Energy Map for India: Technology Vision 2030., ISBN 81-7993-064-5. New Delhi: TERI Press.

    Google Scholar 

  • Thorbecke, E. (1992). Adjustment and equity in Indonesia. In Development Centre of the Organisation for Economic Co-operation and Development. Paris: OECD Publications and Information Centre [Distributor].

    Google Scholar 

  • Vashishtha, S., & Ramachandran, M. (2006). Multicriteria evaluation of demand side management (DSM) implementation strategies in the Indian power sector. Energy, 31(12), 2210–2225.

    Article  Google Scholar 

  • Wang, T., & Watson, J. (2010). Scenario analysis of China’s emissions pathways in the 21st century for low carbon transition. Energy Policy, 38(7), 3537–3546.

    Article  Google Scholar 

  • Weinberg, A. M. (1979). Limits to energy modeling (No. ORAU/IEA-79-16 (0)). Oak Ridge: Oak Ridge Associated Universities, Inc., TN (USA). Inst. for Energy Analysis.

    Google Scholar 

  • York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanitkar, T. (2020). Review of Energy-Economy-Environment Models. In: An Integrated Framework for Energy-Economy-Emissions Modeling. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-18263-2_2

Download citation

Publish with us

Policies and ethics