Geminiviruses pp 171-196 | Cite as

Geminiviruses Versus Host’s Gene Silencing Mechanism

  • Omid EiniEmail author


RNA silencing is a well-known antiviral pathway that also controls geminiviruses at two levels: inhibition of viral transcription (TGS) and degradation of viral transcripts (PTGS). Plant viruses encode proteins to suppress this antiviral system. In this chapter, the gene silencing pathway and the steps in which the geminiviral suppressors act have been reviewed. More specifically, the type of viral small RNAs and their role in local and systemic silencing have been described. In addition, this chapter provides an overview of latest researches and findings in geminivirus–host interaction in gene silencing pathway.


Geminivirus Gene silencing Methylation Suppressor 



We would like to apologize to those people whose relevant publications could not be cited because of space constraints.


  1. Ach RA, Durfee T, Miller A, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13:304–316PubMedCrossRefGoogle Scholar
  3. Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al Kaff NS, Covey SN, Kreike MM, Page AM, Pinder R, Dale PJ (1998) Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279:2113–2115CrossRefGoogle Scholar
  5. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  6. Amin I, Hussain K, Akbergenov R, Yadav JS, Qazi J, Mansoor S, Hohn T, Fauquet CM, Briddon RW (2011a) Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Mol Plant-Microbe Interact 24:973–983PubMedCrossRefGoogle Scholar
  7. Amin I, Patil B, Briddon R, Mansoor S, Fauquet C (2011b) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amirnia F, Eini O, Koolivand D (2016) In silico analysis of microRNA binding to the genome of Beet curly top Iran virus in tomato. Arch Phytopathol Plant Protect 49:434–444CrossRefGoogle Scholar
  9. Angell SM, Baulcombe DC (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 16:3675–3684PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8:e1002941PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100PubMedCrossRefGoogle Scholar
  12. Aufsatz W, Mette MF, Winden JVD, Matzke AJM, Matzke M (2002) RNA-directed DNA methylation in arabidopsis. Proc Natl Acad Sci USA 99:16499–16506PubMedCrossRefGoogle Scholar
  13. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  15. Baulcombe DC (2007) Molecular biology: amplified silencing. Science 315:199–200PubMedCrossRefGoogle Scholar
  16. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. PNAS 104:12157–12162PubMedCrossRefGoogle Scholar
  17. Bender J (2004) Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7:521–526PubMedCrossRefGoogle Scholar
  18. Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168CrossRefGoogle Scholar
  19. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park H-S, Vazquez F, Robertson D, Meins F, Hohn T, Pooggin MM (2006) Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nuclic Acids Res 34:6233–6246CrossRefGoogle Scholar
  20. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis. Annu Rev Plant Biol 65:473–503PubMedCrossRefGoogle Scholar
  21. Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615–1621PubMedCrossRefGoogle Scholar
  22. Bouché N, Lauressergues D, Gasciolli V, H V. (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boutet S, Vazquez F, Liu J, Beclin C, Fagard M, Gratias A, Morel J-B, Crete P, Chen X, Vaucheret H (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13:843–848PubMedPubMedCentralCrossRefGoogle Scholar
  24. Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243PubMedCrossRefGoogle Scholar
  25. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121PubMedCrossRefGoogle Scholar
  26. Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324:462–474CrossRefGoogle Scholar
  27. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280PubMedCrossRefGoogle Scholar
  28. Brough CL, Gardiner WE, Inamdar NM, Zhang X-Y, Ehrlich M, Bisaro DM (1992) DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol Biol 18:703–712PubMedCrossRefGoogle Scholar
  29. Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas CJ (2012) Geminiviridae. In: King AMQ et al (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, London, pp 351–373Google Scholar
  30. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013PubMedPubMedCentralCrossRefGoogle Scholar
  31. Burgyán J (2008) Role of silencing suppressor proteins. In: Foster GD et al (eds) Plant virology protocols: from viral sequence to protein function. Humana Press, Totowa, NJ, pp 69–79CrossRefGoogle Scholar
  32. Carbonell A, Carrington JC (2015) Antiviral roles of plant argonautes. Curr Opin Plant Biol 27:111–117PubMedCrossRefGoogle Scholar
  33. Carrington JC, Victor A (2003) Role of microRNAs in plant and animal development. Science 301:336–338PubMedCrossRefGoogle Scholar
  34. Chantal B, Jean-Francois L (2007) The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 81:10905–10913CrossRefGoogle Scholar
  35. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chellappan P, Vanitharani R, Fauquet CM (2005a) MicroRNA-binding viral protein interferes with Arabidopsis development. PNAS 102:10381–10386PubMedCrossRefGoogle Scholar
  38. Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005b) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cogoni C, Giuseppe M (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurosporacrassa. PNAS 94:10233–10238PubMedCrossRefGoogle Scholar
  40. Csorba T, Burgyán J (2016) Antiviral silencing and suppression of gene silencing in plants. In: Wang A, Zhou X (eds) Current research topics in plant virology. Springer, Cham, pp 1–33Google Scholar
  41. Csorba T, Bovi A, Dalmay T, Burgyan J (2007) The p122 subunit of tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81:11768–11780PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cui X, Li G, Wang D, Hu D, Zhou X (2005) A begomovirus DNA β encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79(16):10764–10775PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553PubMedCrossRefGoogle Scholar
  44. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313:68–71PubMedCrossRefGoogle Scholar
  45. Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ding SW, Li HW, Lu R, Li F, Li WX (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102:109–115PubMedCrossRefGoogle Scholar
  47. Dogra S, Eini O, Rezaian M, Randles J (2009) A novel shaggy-like kinase interacts with the tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol Biol 71:25–38PubMedCrossRefGoogle Scholar
  48. Duan Y-P, Powell CA, Purcifull DE, Broglio P, Hiebert E (1997) Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Mol Plant-Microbe Interact 10:1065–1074PubMedCrossRefGoogle Scholar
  49. Duan C-G, Wang C-H, Fang R-X, Guo H-S (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423PubMedCrossRefGoogle Scholar
  51. Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250PubMedPubMedCentralCrossRefGoogle Scholar
  52. Eini O (2017) A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol 51:579–585CrossRefGoogle Scholar
  53. Eini O, Dogra SC, Dry IB, Randles JW (2012) Silencing suppressor activity of a begomovirus DNA β encoded protein and its effect on heterologous helper virus replication. Virus Res 167:97–101PubMedCrossRefGoogle Scholar
  54. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200PubMedPubMedCentralCrossRefGoogle Scholar
  55. Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro DM, Rogers SG (1988) Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res 16:7043–7060PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fagard M, Boutet S, Morel J-B, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. PNAS 97:11650–11654PubMedCrossRefGoogle Scholar
  57. Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10(2):150–163PubMedCrossRefGoogle Scholar
  58. Fahlgren N, Carrington J (2010) miRNA target prediction in plants. In: Meyers BC, Green PJ (eds) Plant microRNAs. Humana Press, New York, pp 51–57CrossRefGoogle Scholar
  59. Fangfang L, Changjun H, Zhenghe L, Xueping Z (2014) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10:e1003921CrossRefGoogle Scholar
  60. Feng J, Chen J (2013) In silico analysis the complementarity of tomato microRNA/microRNA* sequences with cucumber mosaic virus (CMV) genomic RNAs. J Nanosci Nanotechnol 13:4421–4426PubMedCrossRefGoogle Scholar
  61. Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116:4689–4693PubMedCrossRefGoogle Scholar
  62. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fondong V, Reddy R, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F (2007) The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol Plant-Microbe Interact 20:380–391PubMedCrossRefGoogle Scholar
  65. Fontenelle MR, Luz DF, Gomes APS, Florentino LH, Zerbini FM, Fontes EPB (2007) Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus tomato chlorotic mottle virus. Virus Res 126:262–267PubMedCrossRefGoogle Scholar
  66. Fukudome A, Fukuhara T (2017) Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44PubMedCrossRefGoogle Scholar
  67. Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson J, Wang M-B, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gao R, Liu P, Wong S-M (2012) Identification of a plant viral RNA genome in the nucleus. PLoS One 7:e48736PubMedPubMedCentralCrossRefGoogle Scholar
  70. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22:481PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286PubMedCrossRefGoogle Scholar
  72. Ghanbari M, Eini O, Ebrahimi S (2016) Differntial expression of MYB33 and AP2 genes and response of Ty resistant plants beet curly top Iran vitus infection in tomato. J Plant Pathol 98:555–562Google Scholar
  73. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. PNAS 105:157–161PubMedCrossRefGoogle Scholar
  74. Gopal P, Pravin Kumar P, Sinilal B, Jose J, Kasin Yadunandam A, Usha R (2007) Differential roles of C4 and βC1 in mediating suppression of post-transcriptional gene silencing: evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite begomovirus. Virus Res 123(1):9–18PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G (2014) Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signalings. J Integr Plant Biol 56:1164–1178PubMedCrossRefGoogle Scholar
  77. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106CrossRefGoogle Scholar
  79. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777CrossRefGoogle Scholar
  80. Hardcastle TJ, Lewsey MG (2016) Mobile small RNAs and their role in regulating cytosine methylation of DNA. RNA Biol 13:1060–1067PubMedPubMedCentralCrossRefGoogle Scholar
  81. Huang J, Yang M, Lu L, Zhang X (2016) Diverse functions of small RNAs in different plant–pathogen communications. Front Microbiol 7:1552PubMedPubMedCentralGoogle Scholar
  82. Hull R (2002) Mattews plant virology, 4th edn. Academic Press, LondonGoogle Scholar
  83. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32PubMedCrossRefGoogle Scholar
  84. Ji L-H, Ding S-W (2001) The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant-Microbe Interact 14:715–724PubMedCrossRefGoogle Scholar
  85. Jiang L, Wei C, Li Y (2012) Viral suppression of RNA silencing. Sci China Life Sci 55:109–118PubMedCrossRefGoogle Scholar
  86. Jones AL, Thomas CL, Maule AJ (1998) De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J 17:6385–6393PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581PubMedCrossRefGoogle Scholar
  88. Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26PubMedCrossRefGoogle Scholar
  89. Kheyr-Pour A, Bananej K, Dafalla GA, Caciagli P, Noris E, Ahoonmanesh A, Lecoq H, Gronenborn B (2000) Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90:629–635PubMedCrossRefGoogle Scholar
  90. Kis A (2016) Polycistronic artificial miRNA mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17:427–437PubMedCrossRefGoogle Scholar
  91. Kon T, Sharma P, Ikegami M (2007) Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152:1273–1282PubMedCrossRefGoogle Scholar
  92. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of wheat dwarf India virus disease. J Virol 88:7093–7104PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kumar V, Mishra SK, Rahman J, Taneja J, Sundaresan G, Mishra NS, Mukherjee SK (2015) Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology 486:158–172PubMedCrossRefGoogle Scholar
  95. Lafforgue G, Martínez F, Niu Q-W, Chua N-H, Daròs J-A, Elena SF (2013) Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J Virol 87:8254–8256PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu Y-P, Dolja VV, Calvino LF, López-Moya JJ, Burgyán J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lecellier C, Voinnet O (2004) RNA silencing: no mercy for viruses? Immunol Rev 198:285PubMedCrossRefGoogle Scholar
  98. Li F, Ding S-W (2006) Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li J-F, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507PubMedPubMedCentralCrossRefGoogle Scholar
  100. Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, Ding M, Li Z, Zhou X (2015) The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol 208:555–569PubMedCrossRefGoogle Scholar
  101. Lin S-S, Wu H-W, Elena SF, Chen K-C, Niu Q-W, Yeh S-D, Chen C-C, Chua N-H (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5:e1000312PubMedPubMedCentralCrossRefGoogle Scholar
  102. Liu S-R, Zhou J-J, Hu C-G, Wei C-L, Zhang J-Z (2017) MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol 8:1801PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lu Y-D, Gan Q-H, Chi X-Y, Qin S (2008) Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep 27:1571–1579PubMedCrossRefGoogle Scholar
  104. Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo AG, Bejarano ER, Accotto GP, Tavazza M (2003) Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is vercome if virus-mediated transgene silencing is activated. J Virol 77:6785–6798PubMedPubMedCentralCrossRefGoogle Scholar
  105. Luna AP, Rodríguez-Negrete EA, Morilla G, Wang L, Lozano-Durán R, Castillo AG, Bejarano ER (2017) V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J Gen Virol 98:2607–2614PubMedCrossRefGoogle Scholar
  106. Maghuly F, Ramkat RC, Laimer M (2014) Virus versus host plant microRNAs: who determines the outcome of the interaction? PLoS One 9:e98263PubMedPubMedCentralCrossRefGoogle Scholar
  107. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  108. Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of Tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mills-Lujan K, Deom C (2010) Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239(1–4):35–110Google Scholar
  110. Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. Plant Cell 14:s289–s301PubMedPubMedCentralCrossRefGoogle Scholar
  111. Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82PubMedCrossRefGoogle Scholar
  112. Morel J-B, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nair V, Zavolan M (2006) Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14:169–175PubMedCrossRefGoogle Scholar
  114. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  115. Naqvi A, Haq Q, Mukherjee S (2010) MicroRNA profiling of tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281–297PubMedPubMedCentralCrossRefGoogle Scholar
  116. Naqvi AR, Choudhury NR, Mukherjee SK, Haq QMR (2011) In silico analysis reveals that several tomato microRNA/microRNA∗ sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem 49:13–17PubMedCrossRefGoogle Scholar
  117. Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW, Fauquet CM (2010) Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405:300–308PubMedCrossRefGoogle Scholar
  118. Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420CrossRefGoogle Scholar
  119. Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, Winden JVD, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390PubMedPubMedCentralCrossRefGoogle Scholar
  120. Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology 404:148–157PubMedCrossRefGoogle Scholar
  121. Park J, Hwang H-S, Buckley K, Park J-B, Auh C-K, Kim D-G, Lee S, Davis K (2010) C4 protein of beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. Plant Cell Rep 29:1377–1389PubMedCrossRefGoogle Scholar
  122. Peretz Y, Eybishtz A, Sela I (2011) Silencing of ORFs C2 and C4 of tomato yellow leaf curl virus engenders resistant or tolerant plants. The Open Virology Journal 5:141–147PubMedPubMedCentralCrossRefGoogle Scholar
  123. Perez-Quintero A, Neme R, Zapata A, Lopez C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10:138–150PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  125. Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60:871–882PubMedCrossRefGoogle Scholar
  126. Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotech 21:131–132CrossRefGoogle Scholar
  127. Poornima Priyadarshini CG, Ambika MV, Tippeswamy R, Savithri HS (2011) Functional characterization of coat protein and V2 involved in cell to cell movement of cotton leaf curl kokhran virus-dabawali. PLoS One 6:e26929PubMedPubMedCentralCrossRefGoogle Scholar
  128. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Micro 11:745–760CrossRefGoogle Scholar
  129. Qi Xie AR-B, Gutierrez GJHAC (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J 15:4900–4908CrossRefGoogle Scholar
  130. Raghavan V, Malik PS, Choudhury NR, Mukherjee SK (2004) The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78:2405–2413PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rahman J, Karjee S, Mukherjee S (2012) MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression. Appl Biochem Biotechnol 167:758–775PubMedCrossRefGoogle Scholar
  132. Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997–9007PubMedPubMedCentralCrossRefGoogle Scholar
  133. Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ramesh S, Ratnaparkhe M, Kumawat G, Gupta G, Husain S (2014a) Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 48:1–14PubMedCrossRefGoogle Scholar
  135. Ramesh SV, Ratnaparkhe MB, Kumawat G, Gupta GK, Husain SM (2014b) Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 48(1):1–14PubMedCrossRefGoogle Scholar
  136. Ramesh SV, Chouhan BS, Kumar G, Praveen S, Chand S (2017) Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during mungbean yellow mosaic India virus (MYMIV) infection. Physiol Mol Plant Pathol 100:13–22CrossRefGoogle Scholar
  137. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  138. Roberts APE, Lewis AP, Jopling CL (2011) The role of microRNAs in viral infection. Prog Mol Biol Transl Sci 102:101–139PubMedCrossRefGoogle Scholar
  139. Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2008) RNA silencing against geminivirus: complementary action of PTGS and TGS in host-recovery. J Virol 83(3):1332–1340PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475PubMedCrossRefGoogle Scholar
  141. Roth BM, Gail JP, Vicki BV (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108PubMedCrossRefGoogle Scholar
  142. Saeed M, Behjatnia SAA, Shahid M, Yusuf Z, Shahida H, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol Plant-Microbe Interact 18:7–14PubMedCrossRefGoogle Scholar
  143. Saeed M, Briddon RW, Dalakouras A, Krczal G, Wassenegger M (2015) Functional analysis of cotton leaf curl kokhran virus/cotton leaf curl Multan betasatellite RNA silencing suppressors. Biology 4:697–714PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sanderfoot AA, Lazarowitz SG (1995) Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7:1185–1194PubMedPubMedCentralCrossRefGoogle Scholar
  145. Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152CrossRefGoogle Scholar
  146. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. PNAS 97:6890–6895PubMedCrossRefGoogle Scholar
  147. Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari S (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3:68PubMedPubMedCentralCrossRefGoogle Scholar
  148. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedPubMedCentralCrossRefGoogle Scholar
  149. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514PubMedCrossRefGoogle Scholar
  150. Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant-Microbe Interact 16:429–438PubMedCrossRefGoogle Scholar
  151. Shams-Bakhsh M, Canto T, Palukaitis P (2007) Enhanced resistance and neutralization of defense responses by suppressors of RNA silencing. Virus Res 130:103–109PubMedCrossRefGoogle Scholar
  152. Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J-I, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476PubMedCrossRefGoogle Scholar
  154. Silhavy D, Burgyan J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83PubMedCrossRefGoogle Scholar
  155. Smith NA, Eamens AL, Wang M-B (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sun L, Lin C, Du J, Song Y, Jiang M, Liu H, Zhou S, Wen F, Zhu C (2016) Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Plant Cell Tissue Organ Cult 126(1):127–139CrossRefGoogle Scholar
  157. Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331PubMedPubMedCentralGoogle Scholar
  158. Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59–70PubMedCrossRefGoogle Scholar
  159. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedPubMedCentralCrossRefGoogle Scholar
  160. Teng KCH, Lai J, Zhang Z, Fang Y, Xia R, Zhou X, Guo H, Xie Q (2010) Involvement of C4 protein of beet severe curly top virus (family Geminiviridae) in virus movement. PLoS One 24:11280CrossRefGoogle Scholar
  161. Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18PubMedCrossRefGoogle Scholar
  162. Tousi N, Eini O (2016) Various tomato microRNAs could target a mild and a severe strain of tomato leaf curl virus. Genet Eng Biosaf J 5:15–22Google Scholar
  163. Tousi N, Eini O, Ahmadvand R, Carra A, Miozzi L, Noris E, Accotto GP (2017) In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australas Plant Pathol 46:379–386CrossRefGoogle Scholar
  164. Townsend R, Stanley J, Curson SJ, Short MN (1985) Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein. EMBO J 4:33–37PubMedPubMedCentralCrossRefGoogle Scholar
  165. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527PubMedPubMedCentralCrossRefGoogle Scholar
  166. Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867PubMedPubMedCentralCrossRefGoogle Scholar
  167. van Wezel R, Dong X, Liu H, Tien P, Stanley J, Hong Y (2002) Mutation of three cysteine residues in tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol Plant-Microbe Interact 15(3):203–208CrossRefGoogle Scholar
  168. Vance V, Berger P, Carrington J, Hunt A, Shi X (1995) 5′ proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206:538–590Google Scholar
  169. Vanitharani R, Chellappan P, Pita J, Fauquet C (2004a) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of post-transcriptional gene silencing. J Virol 78:9487PubMedPubMedCentralCrossRefGoogle Scholar
  170. Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004b) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151PubMedCrossRefGoogle Scholar
  172. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo Zerbini F, Martin DP (2017) Capulavirus and grablovirus: two new genera in the family geminiviridae. Arch Virol 162:1819–1831PubMedPubMedCentralCrossRefGoogle Scholar
  173. Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35PubMedCrossRefGoogle Scholar
  174. Viswanathan C, Anburaj J, Prabu G (2014) Identification and validation of sugarcane streak mosaic virus-encoded microRNAs and their targets in sugarcane. Plant Cell Rep 33:265–276PubMedCrossRefGoogle Scholar
  175. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220CrossRefGoogle Scholar
  176. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  177. Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187PubMedCrossRefGoogle Scholar
  178. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Plant J 96:14147–14152Google Scholar
  179. Wang H, Hao L, Shung C-Y, Sunter G, Bisaro DM (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wang M-B, Bian X-Y, Wu L-M, Liu L-X, Smith NA, Isenegger D, Wu R-M, Masuta C, Vance VB, Watson JM, Rezaian A, Dennis ES, Waterhouse PM (2004) On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. PNAS 101:3275–3280PubMedCrossRefGoogle Scholar
  181. Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wang X-B, Jovel J, Udomporn P, Wang Y, Wu Q, Li W-X, Gasciolli V, Vaucheret H, Ding S-W (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285PubMedCrossRefGoogle Scholar
  184. Wang B, Yang X, Wang Y, Xie Y, Zhou X (2018) Tomato yellow leaf curl virus V2 interacts with host HDA6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol 92: e00036-18Google Scholar
  185. Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576PubMedCrossRefGoogle Scholar
  186. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005a) Expression of arabidopsis MIRNA genes. Plant Physiol 138:2145–2154PubMedPubMedCentralCrossRefGoogle Scholar
  187. Xie Z, Allen E, Wilken A, Carrington JC (2005b) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. PNAS 102:12984–12989PubMedCrossRefGoogle Scholar
  188. Yang J-Y, Iwasaki M, Machida C, Machida Y, Zhou X, Chua N-H (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yang X, Yan X, Raja P, Sizhun L, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Path 7:1–13Google Scholar
  190. Yong Chung H, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460–461:108–118PubMedCrossRefGoogle Scholar
  191. Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762PubMedCrossRefGoogle Scholar
  192. Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua N-H (2006b) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhang J, Dong J, Xu Y, Wu J (2012) V2 protein encoded by tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Res 163:51–58PubMedCrossRefGoogle Scholar
  195. Zhang J, Dang M, Huang Q, Qian Y (2015) Determinants of disease phenotype differences caused by closely-related isolates of begomovirus betasatellites inoculated with the same species of helper virus. Viruses 7:4945–4959PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zhao J-H, Hua C-L, Fang Y-Y, Guo H-S (2016) The dual edge of RNA silencing suppressors in the virus–host interactions. Curr Opin Virol 17:39–44PubMedCrossRefGoogle Scholar
  197. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719PubMedCrossRefGoogle Scholar
  198. Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y (2007) Suppressor of RNA silencing encoded by tomato yellow leaf curl virus-Israel. Virology 358:159–165PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Plant Protection, School of AgricultureUniversity of ZanjanZanjanIran

Personalised recommendations