Skip to main content

Geminiviruses Versus Host’s Gene Silencing Mechanism

  • Chapter
  • First Online:
Geminiviruses
  • 427 Accesses

Abstract

RNA silencing is a well-known antiviral pathway that also controls geminiviruses at two levels: inhibition of viral transcription (TGS) and degradation of viral transcripts (PTGS). Plant viruses encode proteins to suppress this antiviral system. In this chapter, the gene silencing pathway and the steps in which the geminiviral suppressors act have been reviewed. More specifically, the type of viral small RNAs and their role in local and systemic silencing have been described. In addition, this chapter provides an overview of latest researches and findings in geminivirus–host interaction in gene silencing pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ach RA, Durfee T, Miller A, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13:304–316

    Article  CAS  PubMed  Google Scholar 

  • Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Kaff NS, Covey SN, Kreike MM, Page AM, Pinder R, Dale PJ (1998) Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279:2113–2115

    Article  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Amin I, Hussain K, Akbergenov R, Yadav JS, Qazi J, Mansoor S, Hohn T, Fauquet CM, Briddon RW (2011a) Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Mol Plant-Microbe Interact 24:973–983

    Article  CAS  PubMed  Google Scholar 

  • Amin I, Patil B, Briddon R, Mansoor S, Fauquet C (2011b) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amirnia F, Eini O, Koolivand D (2016) In silico analysis of microRNA binding to the genome of Beet curly top Iran virus in tomato. Arch Phytopathol Plant Protect 49:434–444

    Article  CAS  Google Scholar 

  • Angell SM, Baulcombe DC (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 16:3675–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8:e1002941

    Article  PubMed  PubMed Central  Google Scholar 

  • Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  CAS  PubMed  Google Scholar 

  • Aufsatz W, Mette MF, Winden JVD, Matzke AJM, Matzke M (2002) RNA-directed DNA methylation in arabidopsis. Proc Natl Acad Sci USA 99:16499–16506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (2007) Molecular biology: amplified silencing. Science 315:199–200

    Article  CAS  PubMed  Google Scholar 

  • Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. PNAS 104:12157–12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender J (2004) Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7:521–526

    Article  CAS  PubMed  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park H-S, Vazquez F, Robertson D, Meins F, Hohn T, Pooggin MM (2006) Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nuclic Acids Res 34:6233–6246

    Article  CAS  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Lauressergues D, Gasciolli V, H V. (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutet S, Vazquez F, Liu J, Beclin C, Fagard M, Gratias A, Morel J-B, Crete P, Chen X, Vaucheret H (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324:462–474

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brough CL, Gardiner WE, Inamdar NM, Zhang X-Y, Ehrlich M, Bisaro DM (1992) DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol Biol 18:703–712

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas CJ (2012) Geminiviridae. In: King AMQ et al (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, London, pp 351–373

    Google Scholar 

  • Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgyán J (2008) Role of silencing suppressor proteins. In: Foster GD et al (eds) Plant virology protocols: from viral sequence to protein function. Humana Press, Totowa, NJ, pp 69–79

    Chapter  Google Scholar 

  • Carbonell A, Carrington JC (2015) Antiviral roles of plant argonautes. Curr Opin Plant Biol 27:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington JC, Victor A (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chantal B, Jean-Francois L (2007) The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 81:10905–10913

    Article  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005a) MicroRNA-binding viral protein interferes with Arabidopsis development. PNAS 102:10381–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005b) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogoni C, Giuseppe M (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurosporacrassa. PNAS 94:10233–10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csorba T, Burgyán J (2016) Antiviral silencing and suppression of gene silencing in plants. In: Wang A, Zhou X (eds) Current research topics in plant virology. Springer, Cham, pp 1–33

    Google Scholar 

  • Csorba T, Bovi A, Dalmay T, Burgyan J (2007) The p122 subunit of tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81:11768–11780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Li G, Wang D, Hu D, Zhou X (2005) A begomovirus DNA β encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79(16):10764–10775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313:68–71

    Article  CAS  PubMed  Google Scholar 

  • Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW, Li HW, Lu R, Li F, Li WX (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102:109–115

    Article  CAS  PubMed  Google Scholar 

  • Dogra S, Eini O, Rezaian M, Randles J (2009) A novel shaggy-like kinase interacts with the tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol Biol 71:25–38

    Article  CAS  PubMed  Google Scholar 

  • Duan Y-P, Powell CA, Purcifull DE, Broglio P, Hiebert E (1997) Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Mol Plant-Microbe Interact 10:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Duan C-G, Wang C-H, Fang R-X, Guo H-S (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eini O (2017) A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol 51:579–585

    Article  CAS  Google Scholar 

  • Eini O, Dogra SC, Dry IB, Randles JW (2012) Silencing suppressor activity of a begomovirus DNA β encoded protein and its effect on heterologous helper virus replication. Virus Res 167:97–101

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro DM, Rogers SG (1988) Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res 16:7043–7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagard M, Boutet S, Morel J-B, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. PNAS 97:11650–11654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Carrington J (2010) miRNA target prediction in plants. In: Meyers BC, Green PJ (eds) Plant microRNAs. Humana Press, New York, pp 51–57

    Chapter  Google Scholar 

  • Fangfang L, Changjun H, Zhenghe L, Xueping Z (2014) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10:e1003921

    Article  CAS  Google Scholar 

  • Feng J, Chen J (2013) In silico analysis the complementarity of tomato microRNA/microRNA* sequences with cucumber mosaic virus (CMV) genomic RNAs. J Nanosci Nanotechnol 13:4421–4426

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116:4689–4693

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondong V, Reddy R, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F (2007) The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol Plant-Microbe Interact 20:380–391

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle MR, Luz DF, Gomes APS, Florentino LH, Zerbini FM, Fontes EPB (2007) Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus tomato chlorotic mottle virus. Virus Res 126:262–267

    Article  CAS  PubMed  Google Scholar 

  • Fukudome A, Fukuhara T (2017) Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson J, Wang M-B, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Liu P, Wong S-M (2012) Identification of a plant viral RNA genome in the nucleus. PLoS One 7:e48736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    Article  CAS  PubMed  Google Scholar 

  • Ghanbari M, Eini O, Ebrahimi S (2016) Differntial expression of MYB33 and AP2 genes and response of Ty resistant plants beet curly top Iran vitus infection in tomato. J Plant Pathol 98:555–562

    Google Scholar 

  • Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. PNAS 105:157–161

    Article  CAS  PubMed  Google Scholar 

  • Gopal P, Pravin Kumar P, Sinilal B, Jose J, Kasin Yadunandam A, Usha R (2007) Differential roles of C4 and βC1 in mediating suppression of post-transcriptional gene silencing: evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite begomovirus. Virus Res 123(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G (2014) Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signalings. J Integr Plant Biol 56:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle TJ, Lewsey MG (2016) Mobile small RNAs and their role in regulating cytosine methylation of DNA. RNA Biol 13:1060–1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Yang M, Lu L, Zhang X (2016) Diverse functions of small RNAs in different plant–pathogen communications. Front Microbiol 7:1552

    PubMed  PubMed Central  Google Scholar 

  • Hull R (2002) Mattews plant virology, 4th edn. Academic Press, London

    Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  CAS  PubMed  Google Scholar 

  • Ji L-H, Ding S-W (2001) The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant-Microbe Interact 14:715–724

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Wei C, Li Y (2012) Viral suppression of RNA silencing. Sci China Life Sci 55:109–118

    Article  CAS  PubMed  Google Scholar 

  • Jones AL, Thomas CL, Maule AJ (1998) De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J 17:6385–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    Article  CAS  PubMed  Google Scholar 

  • Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26

    Article  CAS  PubMed  Google Scholar 

  • Kheyr-Pour A, Bananej K, Dafalla GA, Caciagli P, Noris E, Ahoonmanesh A, Lecoq H, Gronenborn B (2000) Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90:629–635

    Article  CAS  PubMed  Google Scholar 

  • Kis A (2016) Polycistronic artificial miRNA mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17:427–437

    Article  CAS  PubMed  Google Scholar 

  • Kon T, Sharma P, Ikegami M (2007) Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152:1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of wheat dwarf India virus disease. J Virol 88:7093–7104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Mishra SK, Rahman J, Taneja J, Sundaresan G, Mishra NS, Mukherjee SK (2015) Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology 486:158–172

    Article  CAS  PubMed  Google Scholar 

  • Lafforgue G, Martínez F, Niu Q-W, Chua N-H, Daròs J-A, Elena SF (2013) Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J Virol 87:8254–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu Y-P, Dolja VV, Calvino LF, López-Moya JJ, Burgyán J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecellier C, Voinnet O (2004) RNA silencing: no mercy for viruses? Immunol Rev 198:285

    Article  CAS  PubMed  Google Scholar 

  • Li F, Ding S-W (2006) Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-F, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, Ding M, Li Z, Zhou X (2015) The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol 208:555–569

    Article  CAS  PubMed  Google Scholar 

  • Lin S-S, Wu H-W, Elena SF, Chen K-C, Niu Q-W, Yeh S-D, Chen C-C, Chua N-H (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5:e1000312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S-R, Zhou J-J, Hu C-G, Wei C-L, Zhang J-Z (2017) MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol 8:1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y-D, Gan Q-H, Chi X-Y, Qin S (2008) Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep 27:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo AG, Bejarano ER, Accotto GP, Tavazza M (2003) Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is vercome if virus-mediated transgene silencing is activated. J Virol 77:6785–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna AP, Rodríguez-Negrete EA, Morilla G, Wang L, Lozano-Durán R, Castillo AG, Bejarano ER (2017) V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J Gen Virol 98:2607–2614

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Ramkat RC, Laimer M (2014) Virus versus host plant microRNAs: who determines the outcome of the interaction? PLoS One 9:e98263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of Tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills-Lujan K, Deom C (2010) Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239(1–4):35–110

    Google Scholar 

  • Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. Plant Cell 14:s289–s301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    Article  CAS  PubMed  Google Scholar 

  • Morel J-B, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair V, Zavolan M (2006) Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14:169–175

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi A, Haq Q, Mukherjee S (2010) MicroRNA profiling of tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naqvi AR, Choudhury NR, Mukherjee SK, Haq QMR (2011) In silico analysis reveals that several tomato microRNA/microRNA∗ sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem 49:13–17

    Article  CAS  PubMed  Google Scholar 

  • Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW, Fauquet CM (2010) Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405:300–308

    Article  CAS  PubMed  Google Scholar 

  • Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420

    Article  CAS  PubMed  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, Winden JVD, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology 404:148–157

    Article  CAS  PubMed  Google Scholar 

  • Park J, Hwang H-S, Buckley K, Park J-B, Auh C-K, Kim D-G, Lee S, Davis K (2010) C4 protein of beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. Plant Cell Rep 29:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Peretz Y, Eybishtz A, Sela I (2011) Silencing of ORFs C2 and C4 of tomato yellow leaf curl virus engenders resistant or tolerant plants. The Open Virology Journal 5:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Quintero A, Neme R, Zapata A, Lopez C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10:138–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  • Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60:871–882

    Article  CAS  PubMed  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotech 21:131–132

    Article  CAS  Google Scholar 

  • Poornima Priyadarshini CG, Ambika MV, Tippeswamy R, Savithri HS (2011) Functional characterization of coat protein and V2 involved in cell to cell movement of cotton leaf curl kokhran virus-dabawali. PLoS One 6:e26929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Micro 11:745–760

    Article  CAS  Google Scholar 

  • Qi Xie AR-B, Gutierrez GJHAC (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J 15:4900–4908

    Article  Google Scholar 

  • Raghavan V, Malik PS, Choudhury NR, Mukherjee SK (2004) The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman J, Karjee S, Mukherjee S (2012) MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression. Appl Biochem Biotechnol 167:758–775

    Article  CAS  PubMed  Google Scholar 

  • Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997–9007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramesh S, Ratnaparkhe M, Kumawat G, Gupta G, Husain S (2014a) Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 48:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Ratnaparkhe MB, Kumawat G, Gupta GK, Husain SM (2014b) Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 48(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Chouhan BS, Kumar G, Praveen S, Chand S (2017) Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during mungbean yellow mosaic India virus (MYMIV) infection. Physiol Mol Plant Pathol 100:13–22

    Article  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts APE, Lewis AP, Jopling CL (2011) The role of microRNAs in viral infection. Prog Mol Biol Transl Sci 102:101–139

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2008) RNA silencing against geminivirus: complementary action of PTGS and TGS in host-recovery. J Virol 83(3):1332–1340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  PubMed  CAS  Google Scholar 

  • Roth BM, Gail JP, Vicki BV (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Behjatnia SAA, Shahid M, Yusuf Z, Shahida H, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol Plant-Microbe Interact 18:7–14

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Briddon RW, Dalakouras A, Krczal G, Wassenegger M (2015) Functional analysis of cotton leaf curl kokhran virus/cotton leaf curl Multan betasatellite RNA silencing suppressors. Biology 4:697–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1995) Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152

    Article  CAS  PubMed  Google Scholar 

  • Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. PNAS 97:6890–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari S (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514

    Article  CAS  PubMed  Google Scholar 

  • Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant-Microbe Interact 16:429–438

    Article  CAS  PubMed  Google Scholar 

  • Shams-Bakhsh M, Canto T, Palukaitis P (2007) Enhanced resistance and neutralization of defense responses by suppressors of RNA silencing. Virus Res 130:103–109

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J-I, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D, Burgyan J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Eamens AL, Wang M-B (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Lin C, Du J, Song Y, Jiang M, Liu H, Zhou S, Wen F, Zhu C (2016) Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Plant Cell Tissue Organ Cult 126(1):127–139

    Article  CAS  Google Scholar 

  • Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59–70

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng KCH, Lai J, Zhang Z, Fang Y, Xia R, Zhou X, Guo H, Xie Q (2010) Involvement of C4 protein of beet severe curly top virus (family Geminiviridae) in virus movement. PLoS One 24:11280

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18

    Article  CAS  PubMed  Google Scholar 

  • Tousi N, Eini O (2016) Various tomato microRNAs could target a mild and a severe strain of tomato leaf curl virus. Genet Eng Biosaf J 5:15–22

    Google Scholar 

  • Tousi N, Eini O, Ahmadvand R, Carra A, Miozzi L, Noris E, Accotto GP (2017) In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australas Plant Pathol 46:379–386

    Article  CAS  Google Scholar 

  • Townsend R, Stanley J, Curson SJ, Short MN (1985) Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein. EMBO J 4:33–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wezel R, Dong X, Liu H, Tien P, Stanley J, Hong Y (2002) Mutation of three cysteine residues in tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol Plant-Microbe Interact 15(3):203–208

    Article  Google Scholar 

  • Vance V, Berger P, Carrington J, Hunt A, Shi X (1995) 5′ proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206:538–590

    Google Scholar 

  • Vanitharani R, Chellappan P, Pita J, Fauquet C (2004a) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of post-transcriptional gene silencing. J Virol 78:9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004b) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    Article  CAS  PubMed  Google Scholar 

  • Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo Zerbini F, Martin DP (2017) Capulavirus and grablovirus: two new genera in the family geminiviridae. Arch Virol 162:1819–1831

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan C, Anburaj J, Prabu G (2014) Identification and validation of sugarcane streak mosaic virus-encoded microRNAs and their targets in sugarcane. Plant Cell Rep 33:265–276

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Plant J 96:14147–14152

    CAS  Google Scholar 

  • Wang H, Hao L, Shung C-Y, Sunter G, Bisaro DM (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M-B, Bian X-Y, Wu L-M, Liu L-X, Smith NA, Isenegger D, Wu R-M, Masuta C, Vance VB, Watson JM, Rezaian A, Dennis ES, Waterhouse PM (2004) On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. PNAS 101:3275–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-B, Jovel J, Udomporn P, Wang Y, Wu Q, Li W-X, Gasciolli V, Vaucheret H, Ding S-W (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yang X, Wang Y, Xie Y, Zhou X (2018) Tomato yellow leaf curl virus V2 interacts with host HDA6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol 92: e00036-18

    Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005a) Expression of arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Allen E, Wilken A, Carrington JC (2005b) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. PNAS 102:12984–12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J-Y, Iwasaki M, Machida C, Machida Y, Zhou X, Chua N-H (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yan X, Raja P, Sizhun L, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Path 7:1–13

    CAS  Google Scholar 

  • Yong Chung H, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460–461:108–118

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua N-H (2006b) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Dong J, Xu Y, Wu J (2012) V2 protein encoded by tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Res 163:51–58

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dang M, Huang Q, Qian Y (2015) Determinants of disease phenotype differences caused by closely-related isolates of begomovirus betasatellites inoculated with the same species of helper virus. Viruses 7:4945–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J-H, Hua C-L, Fang Y-Y, Guo H-S (2016) The dual edge of RNA silencing suppressors in the virus–host interactions. Curr Opin Virol 17:39–44

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719

    Article  CAS  PubMed  Google Scholar 

  • Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y (2007) Suppressor of RNA silencing encoded by tomato yellow leaf curl virus-Israel. Virology 358:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to apologize to those people whose relevant publications could not be cited because of space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Eini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eini, O. (2019). Geminiviruses Versus Host’s Gene Silencing Mechanism. In: Kumar, R. (eds) Geminiviruses. Springer, Cham. https://doi.org/10.1007/978-3-030-18248-9_10

Download citation

Publish with us

Policies and ethics