Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 213 Accesses

Abstract

The measurements and analysis presented in this thesis investigate two phenomena occurring in 1d Bose gases on time scales longer than the initial dephasing time: the cooling through uniform loss covered in Chap. 4 and the observation of recurrences in the relative phase fluctuations of two decoupled gases presented in Chap. 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Texas Instruments DLP9500, \(1920\times 1080\) FullHD resolution with \(10.8\times {10.8\,\mathrm{\upmu \text {m}}\,}\) mirror size and a maximum full pattern refresh rate of about \({18}\,{\mathrm{kHz}}\). The DMD and its controllers are implemented in a V-9501 module from ViALUX.

  2. 2.

    The imaging system consists of two parts. The first part is a two lens 4f systems with a 3-fold demagnification and a variable horizontal and vertical slit in the Fourier plane. The second part consists of a single lens and the objective of the transverse imaging system, forming a second 8.5-fold demagnification stage. The light is fed into transverse imaging path by a 2” polarizing beam splitter (ThorLabs PBS512).

References

  1. Bücker R et al (2009) Single-particle-sensitive imaging of freely propagating ultracold atoms. New J Phys 11:103039

    Article  Google Scholar 

  2. Fang B, Carleo G, Johnson A, Bouchoule I (2014) Quench-induced breathing mode of one-dimensional Bose gases. Phys Rev Lett 113:035301

    Article  ADS  Google Scholar 

  3. Fang B, Johnson A, Roscilde T, Bouchoule I (2016) Momentum-space correlations of a one-dimensional Bose gas. Phys Rev Lett 116:050402

    Article  ADS  Google Scholar 

  4. Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2011) Dephasing in coherently split quasicondensates. Phys Rev A 83:023618

    Article  ADS  Google Scholar 

  5. Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326

    Article  ADS  Google Scholar 

  6. Schweigler T, et al (Unpublished) Gaussification in a cold atomic quantum simulator

    Google Scholar 

  7. Gluza M, et al (2018) Quantum read-out for cold atomic quantum simulators. arXiv:1807.04567

  8. Gaunt AL, Schmidutz TF, Gotlibovych I, Smith RP, Hadzibabic Z (2013) Bose-Einstein Condensation of Atoms in a Uniform Potential. Phys Rev Lett 110:200406

    Google Scholar 

  9. Mukherjee B et al (2017) Homogeneous atomic Fermi gases. Phys Rev Lett 118:123401

    Article  ADS  Google Scholar 

  10. Hueck K et al (2018) Two-dimensional homogeneous Fermi gases. Phys Rev Lett 120:60402

    Article  ADS  Google Scholar 

  11. Rauer B et al (2018) Recurrences in an isolated quantum many-body system. Science 360:307–310

    Article  MathSciNet  Google Scholar 

  12. Ville JL et al (2018) Sound propagation in a uniform superfluid two-dimensional Bose gas. Phys Rev Lett 121:145301

    Article  ADS  Google Scholar 

  13. Unruh WG (1981) Experimental black-hole evaporation? Phys Rev Lett 46:1351–1353

    Article  ADS  Google Scholar 

  14. Lahav O et al (2010) Realization of a sonic black hole analog in a Bose-Einstein condensate. Phys Rev Lett 105:240401

    Article  ADS  Google Scholar 

  15. Tajik M (2017) Arbitrary one-dimensional optical dipole potentials on an atom chip. Master’s thesis, TU Vienna

    Google Scholar 

  16. Kosloff R, Levy A (2014) Quantum heat engines and refrigerators: continuous devices. Annu Rev Phys Chem 65:365–393

    Article  ADS  Google Scholar 

  17. Steinhauer J (2014) Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat Phys 10:864–869

    Article  ADS  Google Scholar 

  18. Steinhauer J (2016) Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat Phys 12:959–965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauer, B. (2019). Outlook. In: Non-Equilibrium Dynamics Beyond Dephasing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-18236-6_6

Download citation

Publish with us

Policies and ethics