Non-Equilibrium Dynamics Beyond Dephasing pp 87-113 | Cite as
Recurrences
Chapter
First Online:
- 143 Downloads
Abstract
Each finite and isolated physical system undergoing dynamics will return arbitrarily close to its initial configuration after a certain amount of time.
References
- 1.Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math 13:1–270MathSciNetzbMATHGoogle Scholar
- 2.Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien (II) 66:275–370Google Scholar
- 3.Zermelo E (1896) Über einen Satz der Dynamik und die mechanische Wärmetheorie. Annalen der Physik 293:485–494ADSCrossRefGoogle Scholar
- 4.Bocchieri P, Loinger A (1957) Quantum recurrence theorem. Phys Rev 107:337–338ADSMathSciNetCrossRefGoogle Scholar
- 5.Percival IC (1961) Almost periodicity and the quantal H theorem. J Math Phys 2:235ADSMathSciNetCrossRefGoogle Scholar
- 6.Hogg T, Huberman BA (1982) Recurrence phenomena in quantum dynamics. Phys Rev Lett 48:711–714ADSMathSciNetCrossRefGoogle Scholar
- 7.Rempe G, Walther H, Klein N (1987) Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett 58:353–356ADSCrossRefGoogle Scholar
- 8.Brune M et al (1996) Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys Rev Lett 76:1800–1803ADSCrossRefGoogle Scholar
- 9.Greiner M, Mandel O, Hänsch TW, Bloch I (2002) Collapse and revival of the matter wave field of a Bose Einstein condensate. Nature 419:51–54ADSCrossRefGoogle Scholar
- 10.Will S et al (2010) Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465:197–201ADSCrossRefGoogle Scholar
- 11.Clos G, Porras D, Warring U, Schaetz T (2016) Time-resolved observation of thermalization in an isolated quantum system. Phys Rev Lett 117:170401ADSCrossRefGoogle Scholar
- 12.Zeiher J et al (2017) Coherent many-body spin dynamics in a long-range interacting Ising chain. Phys Rev X 7:041063Google Scholar
- 13.Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
- 14.Rauer B et al (2018) Recurrences in an isolated quantum many-body system. Science 360:307–310MathSciNetCrossRefGoogle Scholar
- 15.Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322ADSCrossRefGoogle Scholar
- 16.Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643CrossRefGoogle Scholar
- 17.Lewenstein M, You L (1996) Quantum phase diffusion of a Bose-Einstein condensate. Phys Rev Lett 77:3489–3493ADSCrossRefGoogle Scholar
- 18.Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
- 19.Gogolin C, Eisert J (2016) Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep Prog Phys 79:056001ADSCrossRefGoogle Scholar
- 20.Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an Ab Initio study of the dynamics of the highly excited states of 1D Lattice Hard-Core Bosons. Phys Rev Lett 98:050405ADSCrossRefGoogle Scholar
- 21.Calabrese P, Cardy J (2006) Time dependence of correlation functions following a quantum quench. Phys Rev Lett 96:136801ADSCrossRefGoogle Scholar
- 22.Rieger H, Iglói F (2011) Semiclassical theory for quantum quenches in finite transverse Ising chains. Phys Rev B 84:165117ADSCrossRefGoogle Scholar
- 23.Essler FHL, Fagotti M (2016) Quench dynamics and relaxation in isolated integrable quantum spin chains. J Stat Mech Theory Exp 2016:064002MathSciNetCrossRefGoogle Scholar
- 24.Langen T, Schweigler T, Demler E, Schmiedmayer J (2018) Double light-cone dynamics establish thermal states in integrable 1D Bose gases. New J Phys 20:023034ADSCrossRefGoogle Scholar
- 25.Kuhnert M (2013) Thermalization and Prethermalization in an ultracold Bose Gas. PhD thesis, TU ViennaGoogle Scholar
- 26.Mazets IE, Schmiedmayer J (2008) Dephasing in two decoupled one-dimensional Bose-Einstein condensates and the subexponential decay of the interwell coherence. Eur Phys J B 68:335–339ADSCrossRefGoogle Scholar
- 27.Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2011) Dephasing in coherently split quasicondensates. Phys Rev A 83:023618ADSCrossRefGoogle Scholar
- 28.Huber S, Buchhold M, Schmiedmayer J, Diehl S (2018) Thermalization dynamics of two correlated bosonic quantum wires after a split. Phys Rev A 97:043611ADSCrossRefGoogle Scholar
- 29.Grisins P, Mazets IE (2011) Thermalization in a one-dimensional integrable system. Phys Rev A 84:053635ADSCrossRefGoogle Scholar
- 30.Kulkarni M, Lamacraft A (2013) Finite-temperature dynamical structure factor of the one-dimensional Bose gas: From the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena. Phys Rev A 88:021603ADSCrossRefGoogle Scholar
- 31.Schweigler T (2019) Correlations and dynamics of tunnel-coupled one-dimensional Bose gases. PhD thesis, TU ViennaGoogle Scholar
- 32.Erne S (2018) Far-from-equilibrium quantum many-body systems from universal dynamics to statistical mechanics. PhD thesis, Ruperto-Carola University of HeidelbergGoogle Scholar
- 33.Mazets IE, Schmiedmayer J (2010) Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J Phys 12:055023CrossRefGoogle Scholar
- 34.Petrov DS, Shlyapnikov GV, Walraven JTM (2000) Regimes of quantum degeneracy in trapped 1D gases. Phys Rev Lett 85:3745–3749ADSCrossRefGoogle Scholar
- 35.Geiger R, Langen T, Mazets IE, Schmiedmayer J (2014) Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas. New J Phys 16:053034CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019