Advertisement

Recurrences

  • Bernhard RauerEmail author
Chapter
  • 143 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Each finite and isolated physical system undergoing dynamics will return arbitrarily close to its initial configuration after a certain amount of time.

References

  1. 1.
    Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math 13:1–270MathSciNetzbMATHGoogle Scholar
  2. 2.
    Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien (II) 66:275–370Google Scholar
  3. 3.
    Zermelo E (1896) Über einen Satz der Dynamik und die mechanische Wärmetheorie. Annalen der Physik 293:485–494ADSCrossRefGoogle Scholar
  4. 4.
    Bocchieri P, Loinger A (1957) Quantum recurrence theorem. Phys Rev 107:337–338ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Percival IC (1961) Almost periodicity and the quantal H theorem. J Math Phys 2:235ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hogg T, Huberman BA (1982) Recurrence phenomena in quantum dynamics. Phys Rev Lett 48:711–714ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Rempe G, Walther H, Klein N (1987) Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett 58:353–356ADSCrossRefGoogle Scholar
  8. 8.
    Brune M et al (1996) Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys Rev Lett 76:1800–1803ADSCrossRefGoogle Scholar
  9. 9.
    Greiner M, Mandel O, Hänsch TW, Bloch I (2002) Collapse and revival of the matter wave field of a Bose Einstein condensate. Nature 419:51–54ADSCrossRefGoogle Scholar
  10. 10.
    Will S et al (2010) Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465:197–201ADSCrossRefGoogle Scholar
  11. 11.
    Clos G, Porras D, Warring U, Schaetz T (2016) Time-resolved observation of thermalization in an isolated quantum system. Phys Rev Lett 117:170401ADSCrossRefGoogle Scholar
  12. 12.
    Zeiher J et al (2017) Coherent many-body spin dynamics in a long-range interacting Ising chain. Phys Rev X 7:041063Google Scholar
  13. 13.
    Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
  14. 14.
    Rauer B et al (2018) Recurrences in an isolated quantum many-body system. Science 360:307–310MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322ADSCrossRefGoogle Scholar
  16. 16.
    Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643CrossRefGoogle Scholar
  17. 17.
    Lewenstein M, You L (1996) Quantum phase diffusion of a Bose-Einstein condensate. Phys Rev Lett 77:3489–3493ADSCrossRefGoogle Scholar
  18. 18.
    Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gogolin C, Eisert J (2016) Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep Prog Phys 79:056001ADSCrossRefGoogle Scholar
  20. 20.
    Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an Ab Initio study of the dynamics of the highly excited states of 1D Lattice Hard-Core Bosons. Phys Rev Lett 98:050405ADSCrossRefGoogle Scholar
  21. 21.
    Calabrese P, Cardy J (2006) Time dependence of correlation functions following a quantum quench. Phys Rev Lett 96:136801ADSCrossRefGoogle Scholar
  22. 22.
    Rieger H, Iglói F (2011) Semiclassical theory for quantum quenches in finite transverse Ising chains. Phys Rev B 84:165117ADSCrossRefGoogle Scholar
  23. 23.
    Essler FHL, Fagotti M (2016) Quench dynamics and relaxation in isolated integrable quantum spin chains. J Stat Mech Theory Exp 2016:064002MathSciNetCrossRefGoogle Scholar
  24. 24.
    Langen T, Schweigler T, Demler E, Schmiedmayer J (2018) Double light-cone dynamics establish thermal states in integrable 1D Bose gases. New J Phys 20:023034ADSCrossRefGoogle Scholar
  25. 25.
    Kuhnert M (2013) Thermalization and Prethermalization in an ultracold Bose Gas. PhD thesis, TU ViennaGoogle Scholar
  26. 26.
    Mazets IE, Schmiedmayer J (2008) Dephasing in two decoupled one-dimensional Bose-Einstein condensates and the subexponential decay of the interwell coherence. Eur Phys J B 68:335–339ADSCrossRefGoogle Scholar
  27. 27.
    Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2011) Dephasing in coherently split quasicondensates. Phys Rev A 83:023618ADSCrossRefGoogle Scholar
  28. 28.
    Huber S, Buchhold M, Schmiedmayer J, Diehl S (2018) Thermalization dynamics of two correlated bosonic quantum wires after a split. Phys Rev A 97:043611ADSCrossRefGoogle Scholar
  29. 29.
    Grisins P, Mazets IE (2011) Thermalization in a one-dimensional integrable system. Phys Rev A 84:053635ADSCrossRefGoogle Scholar
  30. 30.
    Kulkarni M, Lamacraft A (2013) Finite-temperature dynamical structure factor of the one-dimensional Bose gas: From the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena. Phys Rev A 88:021603ADSCrossRefGoogle Scholar
  31. 31.
    Schweigler T (2019) Correlations and dynamics of tunnel-coupled one-dimensional Bose gases. PhD thesis, TU ViennaGoogle Scholar
  32. 32.
    Erne S (2018) Far-from-equilibrium quantum many-body systems from universal dynamics to statistical mechanics. PhD thesis, Ruperto-Carola University of HeidelbergGoogle Scholar
  33. 33.
    Mazets IE, Schmiedmayer J (2010) Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J Phys 12:055023CrossRefGoogle Scholar
  34. 34.
    Petrov DS, Shlyapnikov GV, Walraven JTM (2000) Regimes of quantum degeneracy in trapped 1D gases. Phys Rev Lett 85:3745–3749ADSCrossRefGoogle Scholar
  35. 35.
    Geiger R, Langen T, Mazets IE, Schmiedmayer J (2014) Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas. New J Phys 16:053034CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance

Personalised recommendations