Cooling Through Uniform Loss

  • Bernhard RauerEmail author
Part of the Springer Theses book series (Springer Theses)


Cooling through a controlled loss of particles, in the form of evaporative cooling, is a foundational technique in the field of cold atoms. In nearly all experimental setups it is an essential tool to cool atoms below the limits of laser cooling and to reach degeneracy.


  1. 1.
    Paredes B et al (2004) Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429:277–281ADSCrossRefGoogle Scholar
  2. 2.
    Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903ADSCrossRefGoogle Scholar
  3. 3.
    Haller E et al (2010) Confinement-induced resonances in low-dimensional quantum systems. Phys Rev Lett 104:153203ADSCrossRefGoogle Scholar
  4. 4.
    Hofferberth S et al (2008) Probing quantum and thermal noise in an interacting many-body system. Nat Phys 4:489–495CrossRefGoogle Scholar
  5. 5.
    Jacqmin T, Armijo J, Berrada T, Kheruntsyan KV, Bouchoule I (2011) Sub-poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Phys Rev Lett 106:230405ADSCrossRefGoogle Scholar
  6. 6.
    Rauer B et al (2016) Cooling of a one-dimensional Bose gas. Phys Rev Lett 116:030402ADSCrossRefGoogle Scholar
  7. 7.
    Grišins P, Rauer B, Langen T, Schmiedmayer J, Mazets IE (2016) Degenerate Bose gases with uniform loss. Phys Rev A 93:033634ADSCrossRefGoogle Scholar
  8. 8.
    Rauer B (2012) Evaporative cooling of one-dimensional Bose gases. Master’s thesis, TU ViennaGoogle Scholar
  9. 9.
    Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
  10. 10.
    Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Grišins P (2014) Cooling and thermalization of one-dimensional bosonic systems. Ph.D. thesis, TU ViennaGoogle Scholar
  12. 12.
    Johnson A, Szigeti SS, Schemmer M, Bouchoule I (2017) Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates. Phys Rev A 96:013623ADSCrossRefGoogle Scholar
  13. 13.
    Schemmer M, Johnson A, Bouchoule I (2018) Monitoring squeezed collective modes of a one-dimensional Bose gas after an interaction quench using density-ripple analysis. Phys Rev A 98:043604ADSCrossRefGoogle Scholar
  14. 14.
    Rohringer W et al (2015) Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas. Sci Rep 5:9820CrossRefGoogle Scholar
  15. 15.
    Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys Rev Lett 98:050405Google Scholar
  16. 16.
    Grisins P, Mazets IE (2011) Thermalization in a one-dimensional integrable system. Phys Rev A 84:053635ADSCrossRefGoogle Scholar
  17. 17.
    Kulkarni M, Lamacraft A (2013) Finite-temperature dynamical structure factor of the one-dimensional Bose gas: from the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena. Phys Rev A 88:021603ADSCrossRefGoogle Scholar
  18. 18.
    Fang B, Carleo G, Johnson A, Bouchoule I (2014) Quench-induced breathing mode of one-dimensional Bose gases. Phys Rev Lett 113:035301ADSCrossRefGoogle Scholar
  19. 19.
    Fang B, Johnson A, Roscilde T, Bouchoule I (2016) Momentum-space correlations of a one-dimensional Bose gas. Phys Rev Lett 116:050402ADSCrossRefGoogle Scholar
  20. 20.
    Johnson A (2016) One-dimensional Bose gases on an atom chip: correlations in momentum space and theoretical investigation of loss-induced cooling. Ph.D. thesis, University of Paris-SaclayGoogle Scholar
  21. 21.
    Schemmer M, Johnson A, Photopoulos R, Bouchoule I (2017) Monte Carlo wave-function description of losses in a one-dimensional Bose gas and cooling to the ground state by quantum feedback. Phys Rev A 95:043641ADSCrossRefGoogle Scholar
  22. 22.
    Bouchoule I, Schemmer M, Henkel C (2018) Cooling phonon modes of a Bose condensate with uniform few body losses. SciPost Phys 5:043ADSCrossRefGoogle Scholar
  23. 23.
    Schemmer M, Bouchoule I (2018) Cooling a Bose gas by three-body losses. Phys Rev Lett 121:200401ADSCrossRefGoogle Scholar
  24. 24.
    Schemmer M, Institut d’Optique, Université Paris Saclay, France, (Personal communication)Google Scholar
  25. 25.
    Carusotto I, BEC Center and Dipartimento di Fisica, Università di Trento, Italy, (Personal communication)Google Scholar
  26. 26.
    Hagley EW et al (1999) A well-collimated quasi-continuous atom laser. Science 283:1706–1709ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance

Personalised recommendations