Non-Equilibrium Dynamics Beyond Dephasing pp 67-86 | Cite as
Cooling Through Uniform Loss
Chapter
First Online:
- 147 Downloads
Abstract
Cooling through a controlled loss of particles, in the form of evaporative cooling, is a foundational technique in the field of cold atoms. In nearly all experimental setups it is an essential tool to cool atoms below the limits of laser cooling and to reach degeneracy.
References
- 1.Paredes B et al (2004) Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429:277–281ADSCrossRefGoogle Scholar
- 2.Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903ADSCrossRefGoogle Scholar
- 3.Haller E et al (2010) Confinement-induced resonances in low-dimensional quantum systems. Phys Rev Lett 104:153203ADSCrossRefGoogle Scholar
- 4.Hofferberth S et al (2008) Probing quantum and thermal noise in an interacting many-body system. Nat Phys 4:489–495CrossRefGoogle Scholar
- 5.Jacqmin T, Armijo J, Berrada T, Kheruntsyan KV, Bouchoule I (2011) Sub-poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Phys Rev Lett 106:230405ADSCrossRefGoogle Scholar
- 6.Rauer B et al (2016) Cooling of a one-dimensional Bose gas. Phys Rev Lett 116:030402ADSCrossRefGoogle Scholar
- 7.Grišins P, Rauer B, Langen T, Schmiedmayer J, Mazets IE (2016) Degenerate Bose gases with uniform loss. Phys Rev A 93:033634ADSCrossRefGoogle Scholar
- 8.Rauer B (2012) Evaporative cooling of one-dimensional Bose gases. Master’s thesis, TU ViennaGoogle Scholar
- 9.Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
- 10.Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
- 11.Grišins P (2014) Cooling and thermalization of one-dimensional bosonic systems. Ph.D. thesis, TU ViennaGoogle Scholar
- 12.Johnson A, Szigeti SS, Schemmer M, Bouchoule I (2017) Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates. Phys Rev A 96:013623ADSCrossRefGoogle Scholar
- 13.Schemmer M, Johnson A, Bouchoule I (2018) Monitoring squeezed collective modes of a one-dimensional Bose gas after an interaction quench using density-ripple analysis. Phys Rev A 98:043604ADSCrossRefGoogle Scholar
- 14.Rohringer W et al (2015) Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas. Sci Rep 5:9820CrossRefGoogle Scholar
- 15.Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys Rev Lett 98:050405Google Scholar
- 16.Grisins P, Mazets IE (2011) Thermalization in a one-dimensional integrable system. Phys Rev A 84:053635ADSCrossRefGoogle Scholar
- 17.Kulkarni M, Lamacraft A (2013) Finite-temperature dynamical structure factor of the one-dimensional Bose gas: from the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena. Phys Rev A 88:021603ADSCrossRefGoogle Scholar
- 18.Fang B, Carleo G, Johnson A, Bouchoule I (2014) Quench-induced breathing mode of one-dimensional Bose gases. Phys Rev Lett 113:035301ADSCrossRefGoogle Scholar
- 19.Fang B, Johnson A, Roscilde T, Bouchoule I (2016) Momentum-space correlations of a one-dimensional Bose gas. Phys Rev Lett 116:050402ADSCrossRefGoogle Scholar
- 20.Johnson A (2016) One-dimensional Bose gases on an atom chip: correlations in momentum space and theoretical investigation of loss-induced cooling. Ph.D. thesis, University of Paris-SaclayGoogle Scholar
- 21.Schemmer M, Johnson A, Photopoulos R, Bouchoule I (2017) Monte Carlo wave-function description of losses in a one-dimensional Bose gas and cooling to the ground state by quantum feedback. Phys Rev A 95:043641ADSCrossRefGoogle Scholar
- 22.Bouchoule I, Schemmer M, Henkel C (2018) Cooling phonon modes of a Bose condensate with uniform few body losses. SciPost Phys 5:043ADSCrossRefGoogle Scholar
- 23.Schemmer M, Bouchoule I (2018) Cooling a Bose gas by three-body losses. Phys Rev Lett 121:200401ADSCrossRefGoogle Scholar
- 24.Schemmer M, Institut d’Optique, Université Paris Saclay, France, maximilian.schemmer@institutoptique.fr (Personal communication)Google Scholar
- 25.Carusotto I, BEC Center and Dipartimento di Fisica, Università di Trento, Italy, iacopo.carusotto@unitn.it (Personal communication)Google Scholar
- 26.Hagley EW et al (1999) A well-collimated quasi-continuous atom laser. Science 283:1706–1709ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019