Skip to main content

Experimental Setup and Probing

  • Chapter
  • First Online:
Non-Equilibrium Dynamics Beyond Dephasing

Part of the book series: Springer Theses ((Springer Theses))

  • 233 Accesses

Abstract

This chapter serves as an introduction to the experimental setup. It discusses the tools and techniques developed to create and probe the 1d Bose gases described in Chap. 2. First, Sect. 3.1 reviews basic experimental techniques until Sect. 3.2 describes the experimental setup and cycle. Both of these discussion are kept brief as there exists a vast body of literature and theses on these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As for Eq. (3.1), this expression is valid as long as the fields are small enough such that the magnitude of \(\mathbf {F}\) remains a good quantum number.

  2. 2.

    Assuming that all detunings are much larger than the excited state hyperfine splitting.

  3. 3.

    The ground state hyperfine splitting in \(^{87}\)Rb is 6.8 GHz [5] while the for typical parameters in our setup the Zeeman state splitting in the center of the undressed trap is \({\sim }{390}\,{\mathrm{kHz}}\) (see Sect. 3.2.2).

  4. 4.

    \(10^{-10}\) mbar, pumped by an ion pump (Varian 150 l/s Star-Cell) and a titanium sublimation pump.

  5. 5.

    Tabor Electronics WW1071.

  6. 6.

    A 6.81 GHz oscillator mixed with a sweepable \({0}-{30}\,{\mathrm{MHz}}\) source (SRS DS345) or/and a sweepable \({1}-{150}\,{\mathrm{MHz}}\) source (VFG150).

  7. 7.

    Coherent MBR-110 pumped by a Coherent Verdi V18.

  8. 8.

    Toptica LD-0780-0080-DFB-1 in a ThorLabs LDM21 mount.

  9. 9.

    In Fig. 3.5, the first and second U-wire pairs correspond to the left and right U-wires. A difference in the currents flowing in these pairs allows to move the trap along the main trapping wire. For us, the optimal position is chosen by finding a region where the potential is sufficiently flat, least perturbed by wire corrugations.

  10. 10.

    \(\lambda = {767}\,{\mathrm{nm}}\), Toptica DLX 110.

  11. 11.

    The optical setup was previously used with resonant light. It was designed to selectively pump parts of the cloud into a dark state for tomographic imaging. More information can be found in [31] and the supplementary materials of [42].

  12. 12.

    The expressions for \(E_\mathrm {kin}\) and \(E_\mathrm {int}\) in the broadened case are obtained by integrating over the transverse degrees of freedom for the kinetic and the interaction term of the Hamiltonian given in Eq. (2.30). Equation (3.7) was also found in [47].

  13. 13.

    In Ref. [48] a similar density dependence of the width in expansion was measured experimentally, though the interpretation of the results has some shortcomings. No argument was given as to why it makes sense to compare the scaling of the measured density distribution width in expansion to the scaling of the in situ wave function width. Further, the expression for the width used was taken from [49], which reproduces the broadened chemical potential well but deviate significantly from the width found in [50] and the width obtained from numerical simulations of the radial GPE.

  14. 14.

    For the harmonic longitudinal confinement typically \(\omega _{\perp }\,/\, \omega _z \;\sim \; 200\).

  15. 15.

    For the box trap it would be \(t_\mathrm {tof}\ll L/c\pi \).

  16. 16.

    Note that the influence of the in situ density fluctuations on the final ripple pattern mainly stems from their modulation of the initial pre-expansion density profile.

  17. 17.

    Calculating the number of fringes within the full \(1/e^2\)-width we obtain \(\frac{2\sqrt{2}\sigma _{t,n}}{\lambda _\mathrm {fs}} = \frac{\sqrt{2}}{\pi }\frac{d}{a_{\perp }}\root 4 \of {1 + 2a_s n_\mathrm {1d}}\).

  18. 18.

    Andor DV435-BV-958.

  19. 19.

    The strategy here is to maximize the \(g_2\) contrast \(C_{g_2}\) or to find the smallest minimum position \(\delta z_\mathrm {min}\) for a given expansion time. See Sect. 3.3.3 for a definition of these quantities.

  20. 20.

    This was concluded only from simulations as a sensitive measurement of the effective spot size, as through the density ripples correlations in the case of long expansion times, is not possible.

  21. 21.

    Possible non-linearities due to different saturation levels are neglected.

  22. 22.

    Semrock SEM-LL01-780-25.

  23. 23.

    Even though the filters are mounted parallel to each other, most of the dipole light probably hits the filters at a small angle. For a large separation this causes the light to undergo only a small number of reflections before exiting the inter-filter cavity and being dumped, leading to a higher total optical density.

  24. 24.

    Andor iXon DV887DCS-BV. An EMCCD camera used without the electron multiplier mode.

  25. 25.

    Uniblitz LS6. This shutter takes 0.7 ms to fully open its 6 mm wide aperture.

  26. 26.

    Andor DV435-BV-958.

  27. 27.

    The peak height was the observable used for thermometry in [59].

  28. 28.

    Numerically we observe that this relation breaks down when the size of the density modulations emerging in expansion get comparable to the average density.

  29. 29.

    The soundness of this phenomenological consideration of the imaging resolution was confirmed by numerical simulations if the imaging process. Numerical integration was performed using the novel technique found in Ref. [71].

  30. 30.

    The parameter \(\Delta _\mathrm {rf}\) gives the relative difference of the squared peak-to-peak amplitude of the applied voltages, translating into a current amplitude imbalance. Due to possible differences in resistance \(\Delta _\mathrm {rf} = 0\) does not equate balanced rf currents.

References

  1. Foot CJ (2005) Atomic physics. Oxford University Press, Oxford

    Google Scholar 

  2. Metcalf HJ, van der Straten P (1999) Laser Cooling and Trapping. Springer, New York

    Book  Google Scholar 

  3. Dalibard J, Cohen-Tannoudji C (1989) Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J Opt Soc Am B 6:2023

    Article  ADS  Google Scholar 

  4. Wing WH (1984) On neutral particle trapping in quasistatic electromagnetic fields. Prog. Quantum Electron 8:181–199

    Article  ADS  Google Scholar 

  5. Steck DA (2015) Rubidium 87 D line data. http://steck.us/alkalidata

  6. Ketterle W, Durfee D, Stamper-Kurn D (1999) Making, probing and understanding Bose-Einstein condensates. Proc Int Sch Phys Enrico Fermi 140:67–176

    Google Scholar 

  7. Reichel J (2011) Trapping and manipulating atoms on chips. In Reichel J, Vuletić V (eds) Atom chips, Chap. 2. Wiley-VCH, Weinheim, Germany, pp 33–60

    Chapter  Google Scholar 

  8. Reichel J, Vuletić V (eds) (2011) Atom chips. Wiley-VCH, Weinheim

    Google Scholar 

  9. Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C (2002) Microscopic atom optics: from wires to an atom chip. Adv At Mol Opt Phys 48:263–356

    Article  ADS  Google Scholar 

  10. Fortágh J, Zimmermann C (2007) Magnetic microtraps for ultracold atoms. Rev Mod Phys 79:235–289

    Article  ADS  Google Scholar 

  11. Lesanovsky I et al (2006) Adiabatic radio-frequency potentials for the coherent manipulation of matter waves. Phys Rev A 73:033619

    Article  ADS  Google Scholar 

  12. Perrin H (2013) Les Houches lectures on adiabatic potentials. http://www-lpl.univ-paris13.fr/bec/bec/Team_Helene.htm

  13. Zobay O, Garraway BM (2004) Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials. Phys Rev A 69:023605

    Article  ADS  Google Scholar 

  14. Lesanovsky I, Hofferberth S, Schmiedmayer J, Schmelcher P (2006) Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials. Phys Rev A 74:033619

    Article  ADS  Google Scholar 

  15. Göbel, M (2008) Low dimensional traps for Bose-Fermi mixtures. Ph.D. thesis, Ruperto-Carola University of Heidelberg

    Google Scholar 

  16. Hofferberth S, Fischer B, Schumm T, Schmiedmayer J, Lesanovsky I (2007) Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys Rev A 76:013401

    Article  ADS  Google Scholar 

  17. Grimm R, Weidemüller M, Ovchinnikov YB (2000) Optical dipole traps for neutral atoms. Adv At Mol Opt Phys 42:95–170

    Article  ADS  Google Scholar 

  18. Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1:23–30

    Article  Google Scholar 

  19. Meyrath TP, Schreck F, Hanssen JL, Chuu C-S, Raizen MG (2005) Bose-Einstein condensate in a box. Phys Rev A 71:041604

    Article  ADS  Google Scholar 

  20. Gaunt AL, Schmidutz TF, Gotlibovych I, Smith RP, Hadzibabic Z (2013) Bose-Einstein condensation of atoms in a uniform potential. Phys Rev Lett 110:200406

    Article  ADS  Google Scholar 

  21. Corman L et al (2014) Quench-induced supercurrents in an annular Bose Gas. Phys Rev Lett 113:135302

    Article  ADS  Google Scholar 

  22. Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A (2018) Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561:79–82

    Article  ADS  Google Scholar 

  23. Hess H et al (1987) Magnetic trapping of spin-polarized atomic hydrogen. Phys Rev Lett 59:672–675

    Article  ADS  Google Scholar 

  24. Davis KB, Mewes M-O, Joffe MA, Andrews MR, Ketterle W (1995) Evaporative cooling of sodium atoms. Phys Rev Lett 74:5202–5205

    Article  ADS  Google Scholar 

  25. Petrich W, Anderson MH, Ensher JR, Cornell EA (1995) Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys Rev Lett 74:3352–3355

    Article  ADS  Google Scholar 

  26. Davis KB, Mewes MO, Ketterle W (1995) An analytical model for evaporative cooling of atoms. Appl Phys B Laser Opt 60:155–159

    Article  ADS  Google Scholar 

  27. Luiten OJ, Reynolds MW, Walraven JTM (1996) Kinetic theory of the evaporative cooling of a trapped gas. Phys Rev A 53:381–389

    Article  ADS  Google Scholar 

  28. Smith DA et al (2011) Absorption imaging of ultracold atoms on atom chips. Opt Express 19:8471–85

    Article  ADS  Google Scholar 

  29. vom Hagen C (2008) Towards a low-dimensional degenerate Fermi-Fermi-Bose mixture. Ph.D. thesis, Ruperto-Carola University of Heidelberg

    Google Scholar 

  30. Kuhnert M (2008) A dual-species two-MOT setup for preparing a Bose-Fermi mixture on an atom chip. Master’s thesis, TU Vienna

    Google Scholar 

  31. Gring M (2012) Prethermalization in an isolated many body system. Ph.D. thesis, TU Vienna

    Google Scholar 

  32. Kuhnert M (2013) Thermalization and prethermalization in an ultracold Bose gas. Ph.D. thesis, TU Vienna

    Google Scholar 

  33. Langen T (2013) Non-equilibrium dynamics of one-dimensional Bose gases. Ph.D. thesis, TU Vienna

    Google Scholar 

  34. Stix B (2008) A new imaging system for dual-species atom chip experiments. Master’s thesis, TU Vienna

    Google Scholar 

  35. Schreitl M (2010) Creating and purifying ultracold degenerate gases using hyperfine transitions. Master’s thesis, TU Vienna

    Google Scholar 

  36. Rauer B (2012) Evaporative cooling of one-dimensional Bose gases. Master’s thesis, TU Vienna

    Google Scholar 

  37. Reichel J, Hänsel W, Hänsch TW (1999) Atomic micromanipulation with magnetic surface traps. Phys Rev Lett 83:3398–3401

    Article  ADS  Google Scholar 

  38. Wildermuth S et al (2004) Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys Rev A 69:030901

    Article  ADS  Google Scholar 

  39. Estève J et al (2004) Role of wire imperfections in micromagnetic traps for atoms. Phys Rev A 70:043629

    Article  ADS  Google Scholar 

  40. Schumm T et al (2005) Atom chips in the real world: the effects of wire corrugation. Eur Phys J D 32:171–180

    Article  ADS  Google Scholar 

  41. van Es JJP et al (2010) Box traps on an atom chip for one-dimensional quantum gases. J Phys B At Mol Opt Phys 43:155002

    Article  ADS  Google Scholar 

  42. Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322

    Article  ADS  Google Scholar 

  43. Gallego D, Hofferberth S, Schumm T, Krüger P, Schmiedmayer J (2009) Optical lattice on an atom chip. Opt Lett 34:3463

    Article  ADS  Google Scholar 

  44. Straatsma CJE et al (2015) On-chip optical lattice for cold atom experiments. Opt Lett 40:3368

    Article  ADS  Google Scholar 

  45. Winkler G (2010) A dipole trap on an atom chip. Master’s thesis, TU Vienna

    Google Scholar 

  46. Tajik M (2017) Arbitrary one-dimensional optical dipole potentials on an atom chip. Master’s thesis, TU Vienna

    Google Scholar 

  47. Massignan P, Modugno M (2003) One-dimensional model for the dynamics and expansion of elongated Bose-Einstein condensates. Phys Rev A 67:023614

    Article  ADS  Google Scholar 

  48. Krüger P, Hofferberth S, Mazets IE, Lesanovsky I, Schmiedmayer J (2010) Weakly interacting Bose gas in the one-dimensional limit. Phys Rev Lett 105:265302

    Article  ADS  Google Scholar 

  49. Gerbier F (2004) Quasi-1D Bose-Einstein condensates in the dimensional crossover regime. Europhys Lett (EPL) 66:771–777

    Article  ADS  Google Scholar 

  50. Salasnich L, Parola A, Reatto L (2002) Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys Rev A 65:043614

    Article  ADS  Google Scholar 

  51. Pitaevskii L, Stringari S (2003) Bose-Einstein condensation. Clarendon Press, Oxford

    MATH  Google Scholar 

  52. Dettmer S et al (2001) Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys Rev Lett 87:160406

    Article  ADS  Google Scholar 

  53. Reinaudi G, Lahaye T, Wang Z, Guéry-Odelin D (2007) Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt Lett 32:3143

    Article  ADS  Google Scholar 

  54. Schweigler T (2019) Correlations and dynamics of tunnel-coupled one-dimensional Bose gases. Ph.D. thesis, TU Vienna

    Google Scholar 

  55. Marte A (2003) Feshbach-Resonanzen bei Stößen ultrakalter Rubidiumatome. Ph.D. thesis, Technical University of Munich

    Google Scholar 

  56. Langen T (2013) Comment on probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys Rev Lett 111:2012–2013

    Article  Google Scholar 

  57. Ockeloen CF, Tauschinsky AF, Spreeuw RJC, Whitlock S (2010) Detection of small atom numbers through image processing. Phys Rev A 82:061606

    Article  ADS  Google Scholar 

  58. Imambekov A et al (2009) Density ripples in expanding low-dimensional gases as a probe of correlations. Phys Rev A 80:033604

    Article  ADS  Google Scholar 

  59. Manz S et al (2010) Two-point density correlations of quasicondensates in free expansion. Phys Rev A 81:031610

    Article  ADS  Google Scholar 

  60. Rohringer W (2014) Dynamics of one-dimensional Bose gases in time-dependent traps. Ph.D. thesis, TU Vienna

    Google Scholar 

  61. Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2010) Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys Rev Lett 105:015301

    Article  ADS  Google Scholar 

  62. Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643

    Article  Google Scholar 

  63. Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211

    Article  ADS  MathSciNet  Google Scholar 

  64. Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326

    Article  ADS  Google Scholar 

  65. Polkovnikov A, Altman E, Demler E (2006) Interference between independent fluctuating condensates. Proc Nat Acad Sci USA 103:6125–9

    Article  ADS  Google Scholar 

  66. Gritsev V, Altman E, Demler E, Polkovnikov A (2006) Full quantum distribution of contrast in interference experiments between interacting one-dimensional Bose liquids. Nat Phys 2:705–709

    Article  Google Scholar 

  67. Hofferberth S et al (2008) Probing quantum and thermal noise in an interacting many-body system. Nat Phys 4:489–495

    Article  Google Scholar 

  68. Kuhnert M et al (2013) Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys Rev Lett 110:090405

    Article  ADS  Google Scholar 

  69. Adu Smith D et al (2013) Prethermalization revealed by the relaxation dynamics of full distribution functions. New J Phys 15:075011

    Article  Google Scholar 

  70. Kitagawa T, Imambekov A, Schmiedmayer J, Demler E (2011) The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New J Phys 13:073018

    Article  Google Scholar 

  71. Tai MM (1994) A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabet Care 17:152–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauer, B. (2019). Experimental Setup and Probing. In: Non-Equilibrium Dynamics Beyond Dephasing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-18236-6_3

Download citation

Publish with us

Policies and ethics