Experimental Setup and Probing

  • Bernhard RauerEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter serves as an introduction to the experimental setup. It discusses the tools and techniques developed to create and probe the 1d Bose gases described in Chap. 2. First, Sect. 3.1 reviews basic experimental techniques until Sect. 3.2 describes the experimental setup and cycle. Both of these discussion are kept brief as there exists a vast body of literature and theses on these topics.


  1. 1.
    Foot CJ (2005) Atomic physics. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Metcalf HJ, van der Straten P (1999) Laser Cooling and Trapping. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Dalibard J, Cohen-Tannoudji C (1989) Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J Opt Soc Am B 6:2023ADSCrossRefGoogle Scholar
  4. 4.
    Wing WH (1984) On neutral particle trapping in quasistatic electromagnetic fields. Prog. Quantum Electron 8:181–199ADSCrossRefGoogle Scholar
  5. 5.
    Steck DA (2015) Rubidium 87 D line data.
  6. 6.
    Ketterle W, Durfee D, Stamper-Kurn D (1999) Making, probing and understanding Bose-Einstein condensates. Proc Int Sch Phys Enrico Fermi 140:67–176Google Scholar
  7. 7.
    Reichel J (2011) Trapping and manipulating atoms on chips. In Reichel J, Vuletić V (eds) Atom chips, Chap. 2. Wiley-VCH, Weinheim, Germany, pp 33–60CrossRefGoogle Scholar
  8. 8.
    Reichel J, Vuletić V (eds) (2011) Atom chips. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C (2002) Microscopic atom optics: from wires to an atom chip. Adv At Mol Opt Phys 48:263–356ADSCrossRefGoogle Scholar
  10. 10.
    Fortágh J, Zimmermann C (2007) Magnetic microtraps for ultracold atoms. Rev Mod Phys 79:235–289ADSCrossRefGoogle Scholar
  11. 11.
    Lesanovsky I et al (2006) Adiabatic radio-frequency potentials for the coherent manipulation of matter waves. Phys Rev A 73:033619ADSCrossRefGoogle Scholar
  12. 12.
    Perrin H (2013) Les Houches lectures on adiabatic potentials.
  13. 13.
    Zobay O, Garraway BM (2004) Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials. Phys Rev A 69:023605ADSCrossRefGoogle Scholar
  14. 14.
    Lesanovsky I, Hofferberth S, Schmiedmayer J, Schmelcher P (2006) Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials. Phys Rev A 74:033619ADSCrossRefGoogle Scholar
  15. 15.
    Göbel, M (2008) Low dimensional traps for Bose-Fermi mixtures. Ph.D. thesis, Ruperto-Carola University of HeidelbergGoogle Scholar
  16. 16.
    Hofferberth S, Fischer B, Schumm T, Schmiedmayer J, Lesanovsky I (2007) Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys Rev A 76:013401ADSCrossRefGoogle Scholar
  17. 17.
    Grimm R, Weidemüller M, Ovchinnikov YB (2000) Optical dipole traps for neutral atoms. Adv At Mol Opt Phys 42:95–170ADSCrossRefGoogle Scholar
  18. 18.
    Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1:23–30CrossRefGoogle Scholar
  19. 19.
    Meyrath TP, Schreck F, Hanssen JL, Chuu C-S, Raizen MG (2005) Bose-Einstein condensate in a box. Phys Rev A 71:041604ADSCrossRefGoogle Scholar
  20. 20.
    Gaunt AL, Schmidutz TF, Gotlibovych I, Smith RP, Hadzibabic Z (2013) Bose-Einstein condensation of atoms in a uniform potential. Phys Rev Lett 110:200406ADSCrossRefGoogle Scholar
  21. 21.
    Corman L et al (2014) Quench-induced supercurrents in an annular Bose Gas. Phys Rev Lett 113:135302ADSCrossRefGoogle Scholar
  22. 22.
    Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A (2018) Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561:79–82ADSCrossRefGoogle Scholar
  23. 23.
    Hess H et al (1987) Magnetic trapping of spin-polarized atomic hydrogen. Phys Rev Lett 59:672–675ADSCrossRefGoogle Scholar
  24. 24.
    Davis KB, Mewes M-O, Joffe MA, Andrews MR, Ketterle W (1995) Evaporative cooling of sodium atoms. Phys Rev Lett 74:5202–5205ADSCrossRefGoogle Scholar
  25. 25.
    Petrich W, Anderson MH, Ensher JR, Cornell EA (1995) Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys Rev Lett 74:3352–3355ADSCrossRefGoogle Scholar
  26. 26.
    Davis KB, Mewes MO, Ketterle W (1995) An analytical model for evaporative cooling of atoms. Appl Phys B Laser Opt 60:155–159ADSCrossRefGoogle Scholar
  27. 27.
    Luiten OJ, Reynolds MW, Walraven JTM (1996) Kinetic theory of the evaporative cooling of a trapped gas. Phys Rev A 53:381–389ADSCrossRefGoogle Scholar
  28. 28.
    Smith DA et al (2011) Absorption imaging of ultracold atoms on atom chips. Opt Express 19:8471–85ADSCrossRefGoogle Scholar
  29. 29.
    vom Hagen C (2008) Towards a low-dimensional degenerate Fermi-Fermi-Bose mixture. Ph.D. thesis, Ruperto-Carola University of HeidelbergGoogle Scholar
  30. 30.
    Kuhnert M (2008) A dual-species two-MOT setup for preparing a Bose-Fermi mixture on an atom chip. Master’s thesis, TU ViennaGoogle Scholar
  31. 31.
    Gring M (2012) Prethermalization in an isolated many body system. Ph.D. thesis, TU ViennaGoogle Scholar
  32. 32.
    Kuhnert M (2013) Thermalization and prethermalization in an ultracold Bose gas. Ph.D. thesis, TU ViennaGoogle Scholar
  33. 33.
    Langen T (2013) Non-equilibrium dynamics of one-dimensional Bose gases. Ph.D. thesis, TU ViennaGoogle Scholar
  34. 34.
    Stix B (2008) A new imaging system for dual-species atom chip experiments. Master’s thesis, TU ViennaGoogle Scholar
  35. 35.
    Schreitl M (2010) Creating and purifying ultracold degenerate gases using hyperfine transitions. Master’s thesis, TU ViennaGoogle Scholar
  36. 36.
    Rauer B (2012) Evaporative cooling of one-dimensional Bose gases. Master’s thesis, TU ViennaGoogle Scholar
  37. 37.
    Reichel J, Hänsel W, Hänsch TW (1999) Atomic micromanipulation with magnetic surface traps. Phys Rev Lett 83:3398–3401ADSCrossRefGoogle Scholar
  38. 38.
    Wildermuth S et al (2004) Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys Rev A 69:030901ADSCrossRefGoogle Scholar
  39. 39.
    Estève J et al (2004) Role of wire imperfections in micromagnetic traps for atoms. Phys Rev A 70:043629ADSCrossRefGoogle Scholar
  40. 40.
    Schumm T et al (2005) Atom chips in the real world: the effects of wire corrugation. Eur Phys J D 32:171–180ADSCrossRefGoogle Scholar
  41. 41.
    van Es JJP et al (2010) Box traps on an atom chip for one-dimensional quantum gases. J Phys B At Mol Opt Phys 43:155002ADSCrossRefGoogle Scholar
  42. 42.
    Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322ADSCrossRefGoogle Scholar
  43. 43.
    Gallego D, Hofferberth S, Schumm T, Krüger P, Schmiedmayer J (2009) Optical lattice on an atom chip. Opt Lett 34:3463ADSCrossRefGoogle Scholar
  44. 44.
    Straatsma CJE et al (2015) On-chip optical lattice for cold atom experiments. Opt Lett 40:3368ADSCrossRefGoogle Scholar
  45. 45.
    Winkler G (2010) A dipole trap on an atom chip. Master’s thesis, TU ViennaGoogle Scholar
  46. 46.
    Tajik M (2017) Arbitrary one-dimensional optical dipole potentials on an atom chip. Master’s thesis, TU ViennaGoogle Scholar
  47. 47.
    Massignan P, Modugno M (2003) One-dimensional model for the dynamics and expansion of elongated Bose-Einstein condensates. Phys Rev A 67:023614ADSCrossRefGoogle Scholar
  48. 48.
    Krüger P, Hofferberth S, Mazets IE, Lesanovsky I, Schmiedmayer J (2010) Weakly interacting Bose gas in the one-dimensional limit. Phys Rev Lett 105:265302ADSCrossRefGoogle Scholar
  49. 49.
    Gerbier F (2004) Quasi-1D Bose-Einstein condensates in the dimensional crossover regime. Europhys Lett (EPL) 66:771–777ADSCrossRefGoogle Scholar
  50. 50.
    Salasnich L, Parola A, Reatto L (2002) Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys Rev A 65:043614ADSCrossRefGoogle Scholar
  51. 51.
    Pitaevskii L, Stringari S (2003) Bose-Einstein condensation. Clarendon Press, OxfordzbMATHGoogle Scholar
  52. 52.
    Dettmer S et al (2001) Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys Rev Lett 87:160406ADSCrossRefGoogle Scholar
  53. 53.
    Reinaudi G, Lahaye T, Wang Z, Guéry-Odelin D (2007) Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt Lett 32:3143ADSCrossRefGoogle Scholar
  54. 54.
    Schweigler T (2019) Correlations and dynamics of tunnel-coupled one-dimensional Bose gases. Ph.D. thesis, TU ViennaGoogle Scholar
  55. 55.
    Marte A (2003) Feshbach-Resonanzen bei Stößen ultrakalter Rubidiumatome. Ph.D. thesis, Technical University of MunichGoogle Scholar
  56. 56.
    Langen T (2013) Comment on probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys Rev Lett 111:2012–2013CrossRefGoogle Scholar
  57. 57.
    Ockeloen CF, Tauschinsky AF, Spreeuw RJC, Whitlock S (2010) Detection of small atom numbers through image processing. Phys Rev A 82:061606ADSCrossRefGoogle Scholar
  58. 58.
    Imambekov A et al (2009) Density ripples in expanding low-dimensional gases as a probe of correlations. Phys Rev A 80:033604ADSCrossRefGoogle Scholar
  59. 59.
    Manz S et al (2010) Two-point density correlations of quasicondensates in free expansion. Phys Rev A 81:031610ADSCrossRefGoogle Scholar
  60. 60.
    Rohringer W (2014) Dynamics of one-dimensional Bose gases in time-dependent traps. Ph.D. thesis, TU ViennaGoogle Scholar
  61. 61.
    Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2010) Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys Rev Lett 105:015301ADSCrossRefGoogle Scholar
  62. 62.
    Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643CrossRefGoogle Scholar
  63. 63.
    Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
  65. 65.
    Polkovnikov A, Altman E, Demler E (2006) Interference between independent fluctuating condensates. Proc Nat Acad Sci USA 103:6125–9ADSCrossRefGoogle Scholar
  66. 66.
    Gritsev V, Altman E, Demler E, Polkovnikov A (2006) Full quantum distribution of contrast in interference experiments between interacting one-dimensional Bose liquids. Nat Phys 2:705–709CrossRefGoogle Scholar
  67. 67.
    Hofferberth S et al (2008) Probing quantum and thermal noise in an interacting many-body system. Nat Phys 4:489–495CrossRefGoogle Scholar
  68. 68.
    Kuhnert M et al (2013) Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys Rev Lett 110:090405ADSCrossRefGoogle Scholar
  69. 69.
    Adu Smith D et al (2013) Prethermalization revealed by the relaxation dynamics of full distribution functions. New J Phys 15:075011CrossRefGoogle Scholar
  70. 70.
    Kitagawa T, Imambekov A, Schmiedmayer J, Demler E (2011) The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New J Phys 13:073018CrossRefGoogle Scholar
  71. 71.
    Tai MM (1994) A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabet Care 17:152–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance

Personalised recommendations