Introduction and Theoretical Basics

  • Bernhard RauerEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter discusses the theoretical foundations of \(\mathrm {1d}\) Bose gases, geared towards the systems investigated in our setup. After a short introduction of interacting \(\mathrm {1d}\) Bose gases we briefly introduce the seminal Lieb-Liniger model, discussing its distinct phases before giving the quasi-condensates regime a more detailed treatment.


  1. 1.
    Giamarchi T (2004) Quantum physics in one dimension. Clarendon Press, OxfordzbMATHGoogle Scholar
  2. 2.
    Pitaevskii L, Stringari S (2003) Bose-Einstein condensation. Clarendon Press, OxfordzbMATHGoogle Scholar
  3. 3.
    Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1136ADSCrossRefGoogle Scholar
  4. 4.
    Hohenberg PC (1967) Existence of long-range order in one and two dimensions. Phys Rev 158:383–386ADSCrossRefGoogle Scholar
  5. 5.
    Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903ADSCrossRefGoogle Scholar
  6. 6.
    Caux J-S, Mossel J (2011) Remarks on the notion of quantum integrability. J Stat Mech Theory Exp P02023Google Scholar
  7. 7.
    Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1:23–30CrossRefGoogle Scholar
  8. 8.
    Kinoshita T (2004) Observation of a one-dimensional Tonks-Girardeau gas. Science 305:1125–1128ADSCrossRefGoogle Scholar
  9. 9.
    Paredes B et al (2004) Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429:277–281ADSCrossRefGoogle Scholar
  10. 10.
    Haller E et al (2009) Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science 325:1224–1227ADSCrossRefGoogle Scholar
  11. 11.
    Reichel J, Vuletić V (eds) (2011) Atom chips. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  12. 12.
    Estève J et al (2006) Observations of density fluctuations in an elongated bose gas: ideal gas and quasicondensate regimes. Phys Rev Lett 96:130403ADSCrossRefGoogle Scholar
  13. 13.
    Hofferberth S, Lesanovsky I, Fischer B, Schumm T, Schmiedmayer J (2007) Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449:324–327ADSCrossRefGoogle Scholar
  14. 14.
    Pethick CJ, Smith H (2002) Bose-Einstein condensation in dilute gases. Cambridge University PressGoogle Scholar
  15. 15.
    van Kempen EGM, Kokkelmans SJJMF, Heinzen DJ, Verhaar BJ (2002) Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys Rev Lett 88:093201ADSCrossRefGoogle Scholar
  16. 16.
    Lieb EH, Liniger W (1963) Exact analysis of an interacting bose gas. I. The general solution and the ground state. Phys Rev 130:1605–1616ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lieb EH (1963) Exact analysis of an interacting bose gas. II. The excitation spectrum. Phys Rev 130:1616–1624ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Girardeau M (1960) Relationship between systems of impenetrable bosons and fermions in one dimension. J Math Phys 1:516–523ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yang CN, Yang CP (1969) Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J Math Phys 10:1115–1122ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Bouchoule I, Van Druten NJ, Westbrook CI (2011) Atom chips and one-dimensional bose gases. In: Reichel J, Vuletić V (eds) Atom Chips, Chap. 11. Wiley-VCH, Weinheim, Germany, pp 331–363CrossRefGoogle Scholar
  21. 21.
    Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2010) Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys Rev Lett 105:015301ADSCrossRefGoogle Scholar
  22. 22.
    Mora C, Castin Y (2003) Extension of Bogoliubov theory to quasicondensates. Phys Rev A 67:053615ADSCrossRefGoogle Scholar
  23. 23.
    Baym G, Pethick CJ (1996) Ground-state properties of magnetically trapped bose-condensed rubidium gas. Phys Rev Lett 76:6–9ADSCrossRefGoogle Scholar
  24. 24.
    Tomonaga S-I (1950) Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog Theor Phys 5:544–569ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Luttinger JM (1963) An exactly soluble model of a many-fermion system. J Math Phys 4:1154–1162ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Mattis DC, Lieb EH (1965) Exact solution of a many-fermion system and its associated boson field. J Math Phys 6:304–312ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Haldane FDM (1981) Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys Rev Lett 47:1840–1843ADSCrossRefGoogle Scholar
  28. 28.
    Cazalilla MA (2004) Bosonizing one-dimensional cold atomic gases. J Phys B Atomic Mol Opt Phys 37:S1–S47ADSCrossRefGoogle Scholar
  29. 29.
    Petrov DS, Shlyapnikov GV, Walraven JTM (2000) Regimes of quantum degeneracy in trapped 1D gases. Phys Rev Lett 85:3745–3749ADSCrossRefGoogle Scholar
  30. 30.
    Dalton B, Ghanbari S (2012) Two mode theory of Bose-Einstein condensates: interferometry and the Josephson model. J Mod Opt 59:287–353ADSCrossRefGoogle Scholar
  31. 31.
    Langen T, Schweigler T, Demler E, Schmiedmayer J (2018) Double light-cone dynamics establish thermal states in integrable 1D Bose gases. New J Phys 20:023034ADSCrossRefGoogle Scholar
  32. 32.
    Schweigler T et al (2017) Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545:323–326ADSCrossRefGoogle Scholar
  33. 33.
    Cuevas-Maraver J, Kevrekidis PG, Williams F (eds) (2014) The sine-Gordon model and its applications. SpringerGoogle Scholar
  34. 34.
    Mazets IE, Schmiedmayer J (2008) Dephasing in two decoupled one-dimensional Bose-Einstein condensates and the subexponential decay of the interwell coherence. Eur Phys J B 68:335–339ADSCrossRefGoogle Scholar
  35. 35.
    Stimming H-P, Mauser NJ, Schmiedmayer J, Mazets IE (2011) Dephasing in coherently split quasicondensates. Phys Rev A 83:023618ADSCrossRefGoogle Scholar
  36. 36.
    Huber S, Buchhold M, Schmiedmayer J, Diehl S (2018) Thermalization dynamics of two correlated bosonic quantum wires after a split. Phys Rev A 97:043611ADSCrossRefGoogle Scholar
  37. 37.
    Görlitz A, et al. (2001) Realization of Bose-Einstein condensates in lower dimensions. Phys Rev Lett 87:130402Google Scholar
  38. 38.
    Olshanii M (1998) Atomic scattering in presence of an external confinement and a gas of impenetrable bosons. Phys Rev Lett 81:938–941ADSCrossRefGoogle Scholar
  39. 39.
    Haller E et al (2010) Confinement-induced resonances in low-dimensional quantum systems. Phys Rev Lett 104:153203ADSCrossRefGoogle Scholar
  40. 40.
    Salasnich L, Parola A, Reatto L (2002) Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys Rev A 65:043614ADSCrossRefGoogle Scholar
  41. 41.
    Salasnich L, Parola A, Reatto L (2004) Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors. Phys Rev A 69:045601ADSCrossRefGoogle Scholar
  42. 42.
    Menotti C, Stringari S (2002) Collective oscillations of a one-dimensional trapped Bose-Einstein gas. Phys Rev A 66:043610ADSCrossRefGoogle Scholar
  43. 43.
    Mazets IE, Schmiedmayer J (2010) Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J Phys 12:055023CrossRefGoogle Scholar
  44. 44.
    Mazets IE, Atominstitut, TU Wien, Austria, (Personal communication)Google Scholar
  45. 45.
    Mazets IE, Schumm T, Schmiedmayer J (2008) Breakdown of integrability in a quasi-1D ultracold bosonic gas. Phys Rev Lett 100:210403ADSCrossRefGoogle Scholar
  46. 46.
    Schweigler T (2019) Correlations and dynamics of tunnel-coupled one-dimensional Bose gases. Ph.D. thesis, TU ViennaGoogle Scholar
  47. 47.
    Bao W, Jaksch D, Markowich PA (2003) Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J Comput Phys 187:318–342ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Rohringer W (2014) Dynamics of one-dimensional bose gases in time-dependent traps. Ph.D. thesis, TU ViennaGoogle Scholar
  49. 49.
    Gardiner CW, Anglin JR, Fudge TIA (2002) The stochastic Gross-Pitaevskii equation. J Phys B Atomic Mol Opt Phys 35:1555–1582ADSCrossRefGoogle Scholar
  50. 50.
    Erne S (2018) Far-from-equilibrium quantum many-body systems from universal dynamics to statistical mechanics. Ph.D. thesis, Ruperto-Carola University of HeidelbergGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance

Personalised recommendations