• Bernhard RauerEmail author
Part of the Springer Theses book series (Springer Theses)


The advent of ultracold atoms, realizing a multitude of condensed matter models in a well controlled and tunable fashion, marked a new era in the experimental study of interacting many-body systems


  1. 1.
    Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964ADSCrossRefGoogle Scholar
  2. 2.
    Bloch I, Dalibard J, Nascimbène S (2012) Quantum simulations with ultracold quantum gases. Nat Phys 8:267–276CrossRefGoogle Scholar
  3. 3.
    Polkovnikov A, Sengupta K, Silva A, Vengalattore M (2011) Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev Mod Phys 83:863–883ADSCrossRefGoogle Scholar
  4. 4.
    Eisert J, Friesdorf M, Gogolin C (2015) Quantum many-body systems out of equilibrium. Nat Phys 11:124–130CrossRefGoogle Scholar
  5. 5.
    Langen T, Geiger R, Schmiedmayer J (2015) Ultracold atoms out of equilibrium. Annu Rev Condens Matter Phys 6:201–217ADSCrossRefGoogle Scholar
  6. 6.
    Cheneau M et al (2012) Light-cone-like spreading of correlations in a quantum many-body system. Nature 481:484–7ADSCrossRefGoogle Scholar
  7. 7.
    Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643CrossRefGoogle Scholar
  8. 8.
    Ronzheimer JP et al (2013) Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys Rev Lett 110:205301ADSCrossRefGoogle Scholar
  9. 9.
    Krinner S, Esslinger T, Brantut J-P (2017) Two-terminal transport measurements with cold atoms. J Phys Condens Matter 29:343003CrossRefGoogle Scholar
  10. 10.
    Braun S et al (2015) Emergence of coherence and the dynamics of quantum phase transitions. Proc Natl Acad Sci 112:3641–3646Google Scholar
  11. 11.
    Navon N, Gaunt AL, Smith RP, Hadzibabic Z (2015) Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347:167–170ADSCrossRefGoogle Scholar
  12. 12.
    Erne S, Bücker R, Gasenzer T, Berges J, Schmiedmayer J (2018) Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563:225–229ADSCrossRefGoogle Scholar
  13. 13.
    Jotzu G et al (2014) Experimental realization of the topological Haldane model with ultracold fermions. Nature 515:237–240ADSCrossRefGoogle Scholar
  14. 14.
    Reichel J, Vuletić V (eds) (2011) Atom Chips. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  15. 15.
    Gogolin C, Eisert J (2016) Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep Prog Phys 79:056001ADSCrossRefGoogle Scholar
  16. 16.
    Deutsch JM (1991) Quantum statistical mechanics in a closed system. Phys Rev A 43:2046–2049ADSCrossRefGoogle Scholar
  17. 17.
    Srednicki M (1994) Chaos and quantum thermalization. Phys Rev E 50:888–901ADSCrossRefGoogle Scholar
  18. 18.
    Rigol M, Dunjko V, Olshanii M (2008) Thermalization and its mechanism for generic isolated quantum systems. Nature 452:854–858ADSCrossRefGoogle Scholar
  19. 19.
    Kaufman AM et al (2016) Quantum thermalization through entanglement in an isolated many-body system. Science 353:794–800ADSCrossRefGoogle Scholar
  20. 20.
    Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903ADSCrossRefGoogle Scholar
  21. 21.
    Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322ADSCrossRefGoogle Scholar
  22. 22.
    Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys Rev Lett 98:050405Google Scholar
  23. 23.
    Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Bocchieri P, Loinger A (1957) Quantum recurrence theorem. Phys Rev 107:337–338ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Percival IC (1961) Almost periodicity and the quantal H theorem. J Math Phys 2:235ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hogg T, Huberman BA (1982) Recurrence phenomena in quantum dynamics. Phys Rev Lett 48:711–714ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Rauer B et al (2018) Recurrences in an isolated quantum many-body system. Science 360:307–310MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rauer B et al (2016) Cooling of a one-dimensional bose gas. Phys Rev Lett 116:030402ADSCrossRefGoogle Scholar
  29. 29.
    Grišins P, Rauer B, Langen T, Schmiedmayer J, Mazets IE (2016) Degenerate Bose gases with uniform loss. Phys Rev A 93:033634ADSCrossRefGoogle Scholar
  30. 30.
    Kosloff R, Levy A (2014) Quantum heat engines and refrigerators: continuous devices. Annu Rev Phys Chem 65:365–393ADSCrossRefGoogle Scholar
  31. 31.
    Unruh WG (1981) Experimental black-hole evaporation? Phys Rev Lett 46:1351–1353ADSCrossRefGoogle Scholar
  32. 32.
    Steinhauer J (2014) Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat Phys 10:864–869ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselÉcole Normale SupérieureParisFrance

Personalised recommendations