Skip to main content

Preamble

  • Chapter
  • First Online:
  • 214 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The advent of ultracold atoms, realizing a multitude of condensed matter models in a well controlled and tunable fashion, marked a new era in the experimental study of interacting many-body systems

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bloch I, Dalibard J, Zwerger W (2008) Many-body physics with ultracold gases. Rev Mod Phys 80:885–964

    Article  ADS  Google Scholar 

  2. Bloch I, Dalibard J, Nascimbène S (2012) Quantum simulations with ultracold quantum gases. Nat Phys 8:267–276

    Article  Google Scholar 

  3. Polkovnikov A, Sengupta K, Silva A, Vengalattore M (2011) Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev Mod Phys 83:863–883

    Article  ADS  Google Scholar 

  4. Eisert J, Friesdorf M, Gogolin C (2015) Quantum many-body systems out of equilibrium. Nat Phys 11:124–130

    Article  Google Scholar 

  5. Langen T, Geiger R, Schmiedmayer J (2015) Ultracold atoms out of equilibrium. Annu Rev Condens Matter Phys 6:201–217

    Article  ADS  Google Scholar 

  6. Cheneau M et al (2012) Light-cone-like spreading of correlations in a quantum many-body system. Nature 481:484–7

    Article  ADS  Google Scholar 

  7. Langen T, Geiger R, Kuhnert M, Rauer B, Schmiedmayer J (2013) Local emergence of thermal correlations in an isolated quantum many-body system. Nat Phys 9:640–643

    Article  Google Scholar 

  8. Ronzheimer JP et al (2013) Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys Rev Lett 110:205301

    Article  ADS  Google Scholar 

  9. Krinner S, Esslinger T, Brantut J-P (2017) Two-terminal transport measurements with cold atoms. J Phys Condens Matter 29:343003

    Article  Google Scholar 

  10. Braun S et al (2015) Emergence of coherence and the dynamics of quantum phase transitions. Proc Natl Acad Sci 112:3641–3646

    Google Scholar 

  11. Navon N, Gaunt AL, Smith RP, Hadzibabic Z (2015) Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347:167–170

    Article  ADS  Google Scholar 

  12. Erne S, Bücker R, Gasenzer T, Berges J, Schmiedmayer J (2018) Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563:225–229

    Article  ADS  Google Scholar 

  13. Jotzu G et al (2014) Experimental realization of the topological Haldane model with ultracold fermions. Nature 515:237–240

    Article  ADS  Google Scholar 

  14. Reichel J, Vuletić V (eds) (2011) Atom Chips. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  15. Gogolin C, Eisert J (2016) Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep Prog Phys 79:056001

    Article  ADS  Google Scholar 

  16. Deutsch JM (1991) Quantum statistical mechanics in a closed system. Phys Rev A 43:2046–2049

    Article  ADS  Google Scholar 

  17. Srednicki M (1994) Chaos and quantum thermalization. Phys Rev E 50:888–901

    Article  ADS  Google Scholar 

  18. Rigol M, Dunjko V, Olshanii M (2008) Thermalization and its mechanism for generic isolated quantum systems. Nature 452:854–858

    Article  ADS  Google Scholar 

  19. Kaufman AM et al (2016) Quantum thermalization through entanglement in an isolated many-body system. Science 353:794–800

    Article  ADS  Google Scholar 

  20. Kinoshita T, Wenger T, Weiss DS (2006) A quantum Newton’s cradle. Nature 440:900–903

    Article  ADS  Google Scholar 

  21. Gring M et al (2012) Relaxation and prethermalization in an isolated quantum system. Science 337:1318–1322

    Article  ADS  Google Scholar 

  22. Rigol M, Dunjko V, Yurovsky V, Olshanii M (2007) Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys Rev Lett 98:050405

    Google Scholar 

  23. Langen T et al (2015) Experimental observation of a generalized Gibbs ensemble. Science 348:207–211

    Article  ADS  MathSciNet  Google Scholar 

  24. Bocchieri P, Loinger A (1957) Quantum recurrence theorem. Phys Rev 107:337–338

    Article  ADS  MathSciNet  Google Scholar 

  25. Percival IC (1961) Almost periodicity and the quantal H theorem. J Math Phys 2:235

    Article  ADS  MathSciNet  Google Scholar 

  26. Hogg T, Huberman BA (1982) Recurrence phenomena in quantum dynamics. Phys Rev Lett 48:711–714

    Article  ADS  MathSciNet  Google Scholar 

  27. Rauer B et al (2018) Recurrences in an isolated quantum many-body system. Science 360:307–310

    Article  MathSciNet  Google Scholar 

  28. Rauer B et al (2016) Cooling of a one-dimensional bose gas. Phys Rev Lett 116:030402

    Article  ADS  Google Scholar 

  29. Grišins P, Rauer B, Langen T, Schmiedmayer J, Mazets IE (2016) Degenerate Bose gases with uniform loss. Phys Rev A 93:033634

    Article  ADS  Google Scholar 

  30. Kosloff R, Levy A (2014) Quantum heat engines and refrigerators: continuous devices. Annu Rev Phys Chem 65:365–393

    Article  ADS  Google Scholar 

  31. Unruh WG (1981) Experimental black-hole evaporation? Phys Rev Lett 46:1351–1353

    Article  ADS  Google Scholar 

  32. Steinhauer J (2014) Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat Phys 10:864–869

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauer, B. (2019). Preamble. In: Non-Equilibrium Dynamics Beyond Dephasing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-18236-6_1

Download citation

Publish with us

Policies and ethics