Skip to main content

Introduction to Control

  • Chapter
  • First Online:
Analytical Design of PID Controllers

Abstract

In this chapter, we describe control systems informally, emphasizing the key elements of tracking, disturbance rejection, stability, and robustness. Next, we show why integral control driven by tracking error provides the correct feedback architecture to try to achieve these goals. This leads naturally to the Proportional–Integral–Derivative (PID) controller structure, where the proportional, integral, and derivative gains \(k_p\), \(k_i\), and \(k_d\) now become the design parameters which need to be tuned to achieve robust stability and time domain response specifications. A brief description is given of some classical and existing tuning approaches. We conclude the chapter with an examination of why optimal control, and in particular quadratic optimization, is absent from PID design theory and show that the reason lies in the inherent fragility of the high-order controllers invariably produced by optimization. The contents of this chapter should serve as background, perspective, and motivation for the rest of the book.

Sections 1.1, 1.2, 1.4 and 1.5.4 are reproduced from S. P. Bhattacharyya, A. Datta, L. H. Keel, Linear System Theory: Structure, Robustness, and Optimization. Taylor & Francis LLC Books, with permission © 2008 Taylor & Francis LLC Books.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, K.H., Chong, G., Yun, L.: PID control system analysis, design, and technology. IEEE Trans. Control. Syst. Technol. 13, 559–576 (2005)

    Article  Google Scholar 

  2. Åström, K.J.: Theory and applications of adaptive control: A survey. Automatica 19(5), 471–486 (1983)

    Google Scholar 

  3. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5), 645–651 (1984)

    Article  MathSciNet  Google Scholar 

  4. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. International Society of Automation, North Carolina (1995)

    Google Scholar 

  5. Astrom, K.J., Hagglund, T.: The future of PID control. Control. Eng. Pract. 9(11), 1163–1175 (2001)

    Article  Google Scholar 

  6. Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers-a survey. Control. Eng. Pract. 1(4), 699–714 (1993)

    Article  Google Scholar 

  7. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, United States (2013)

    Google Scholar 

  8. Bhattacharyya, S.P., Datta, A., Keel, L.H.: Linear Control Theory Structure, Robustness, and Optimization. CRC Press Taylor and Francis Group, Boca Raton (2009)

    MATH  Google Scholar 

  9. Bhattacharyya, S.P., Pearson, J.B.: On the linear servomechanism problem. Int. J. Control 12(5), 795–806 (1970)

    Article  MathSciNet  Google Scholar 

  10. Bhattacharyya, S.P., Pearson, J.B.: On error systems and the servomechanism problem. Int. J. Control 15(6), 1041–1062 (1972)

    Article  MathSciNet  Google Scholar 

  11. Bhattacharyya, S.P., Pearson, J.B., Wonham, W.M.: On zeroing the output of a linear system. Inf. Control 2, 135–142 (1972)

    Article  MathSciNet  Google Scholar 

  12. Briat, C., Gupta, A., Khammash, M.: Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst. 2(1), 15–26 (2016)

    Article  Google Scholar 

  13. Chang, W.D., Yan, J.J.: Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems. Chaos, Solitons Fractals 26(1), 167–175 (2005)

    Article  MathSciNet  Google Scholar 

  14. Cohen, G.H., Coon, G.A.: Theoretical consideration of retarded control. Trans. Am. Soc. Mech. Eng. 76, 827–834 (1953)

    Google Scholar 

  15. Crowe, J., Johnson, M.A.: Automated PI control tuning to meet classical performance specifications using a phase locked loop identifier. In: American Control Conference, pp. 2186–2191 (2001)

    Google Scholar 

  16. Crowe, J., Johnson, M.A.: Towards autonomous pi control satisfying classical robustness specifications. IEE Proc.-Control Theory Appl. 149(1), 26–31 (2002)

    Google Scholar 

  17. Darwish, N.M.: Design of robust PID controllers for first-order plus time delay systems based on frequency domain specifications. J. Eng. Sci. 43(4), 472–489 (2015)

    Google Scholar 

  18. Datta, A., Ho, M.T., Bhattacharyya, S.P.: Structure and Synthesis of PID Controllers. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  19. Davison, E.J.: The output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbances. IEEE Trans. Autom. Control AC 17(5), 621–630 (1972)

    Article  MathSciNet  Google Scholar 

  20. Davison, E.J.: The robust control of a servomechanism problem for linear time-invariant systems. IEEE Trans. Autom. Control AC 21(1), 25–34 (1976)

    Article  MathSciNet  Google Scholar 

  21. Desoer, C.A., Wang, Y.T.: Linear time-invariant robust servomechanism problem: a self-contained exposition. Control. Dyn. Syst. 16, 81–129 (1980)

    Article  Google Scholar 

  22. Diaz-Rodriguez, I.D.: Modern design of classical controllers: continuous-time first order controllers. In: Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society, Student Forum. IECON, pp. 000070–000075 (2015)

    Google Scholar 

  23. Diaz-Rodriguez, I.D., Bhattacharyya, S.P.: A one-shot approach to classical controller design: continuous-time PI controllers. In: Proceedings of International Conference on Advances in Engineering and Technology (AET) (2015)

    Google Scholar 

  24. Diaz-Rodriguez, I.D., Bhattacharyya, S.P.: Modern design of classical controllers: digital PI controllers. In: IEEE International Conference on Industrial Technology (ICIT), pp. 2112–2119 (2015)

    Google Scholar 

  25. Diaz-Rodriguez, I.D., Bhattacharyya, S.P.: PI controller design in the achievable gain-phase margin plane. In: IEEE 55th Conference on Decision and Control (CDC), pp. 4919–4924 (2016)

    Google Scholar 

  26. Diaz-Rodriguez, I.D., Han, S., Bhattacharyya, S.P.: Advanced tuning for Ziegler-Nichols plants. In: 20th World Congress of the International Federation of Automatic Control (IFAC 2017), pp. 1805–1810 (2017)

    Google Scholar 

  27. Diaz-Rodriguez, I.D., Han, S., Bhattacharyya, S.P.: Stability margin based design of multivariable controllers. In: IEEE Conference on Control Technology and Applications (CCTA), pp. 1661–1666 (2017)

    Google Scholar 

  28. Diaz-Rodriguez, I.D., Oliveira, V., Bhattacharyya, S.P.: Modern design of classical controllers: digital PID controllers. In: Proceedings of the 24th IEEE International Symposium on Industrial Electronics, pp. 1010–1015 (2015)

    Google Scholar 

  29. Doyle, J.C., Stein, G.: Robustness with observers. Technical report, DTIC Document (1979)

    Book  Google Scholar 

  30. Dubonjić, L., Nedić, N., Filipović, V., Pršić, D.: Design of PI controllers for hydraulic control systems. Math. Probl. Eng. 2013, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  31. Ferreira, P.M.G.: The servomechanism problem and the method of the state space in the frequency domain. Int. J. Control 23(2), 245–255 (1976)

    Article  MathSciNet  Google Scholar 

  32. Ferreira, P.M.G., Bhattacharyya, S.P.: On blocking zeros. IEEE Trans. Autom. Control AC 22(2), 258–259 (1977)

    Article  Google Scholar 

  33. Francis, B.A., Sebakhy, O.A., Wonham, W.M.: Synthesis of multivariable regulators: the internal model principle. Applide Math. Optim. 1, 64–86 (1974)

    Article  MathSciNet  Google Scholar 

  34. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 6th edn. Pearson Prentice Hall, New Jersey (2009)

    MATH  Google Scholar 

  35. Garcia, C.E., Morari, M.: Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. 21(2), 308–323 (1982)

    Google Scholar 

  36. Hamamci, S.E., Tan, N.: Design of PI controllers for achieving time and frequency domain specifications simultaneously. ISA Trans. 45(4), 529–543 (2006)

    Article  Google Scholar 

  37. Ho, M.T., Datta, A., Bhattacharyya, S.P.: A linear programming characterization of all stabilizing PID controllers. In: Proceedings of American Control Conference, pp. 3922–3928 (1997)

    Google Scholar 

  38. Ho, M.T., Wang, H.S.: PID controller design with guaranteed gain and phase margins. Asian J. Control 5(3), 374–381 (2003)

    Article  Google Scholar 

  39. Ho, W., Lim, K., Xu, W.: Optimal gain and phase margin tuning for PID controllers. Automatica 34(8), 1009–1014 (1998)

    Article  Google Scholar 

  40. Ho, W.K., Gan, O.P., Tay, E.B., Ang, E.I.: Performance and gain and phase margins of well-known PID tuning formulas. IEEE Trans. Control Syst. Technol. 4(4), 473–477 (1996)

    Article  Google Scholar 

  41. Ho, W.K., Lee, T.H., Han, H.P., Hong, Y.: Self-tuning IMC-PID control with interval gain and phase margins assignment. IEEE Trans. Control Syst. Technol. 9(3), 535–541 (2001)

    Article  Google Scholar 

  42. Ho, W.K., Xu, W.: PID tuning for unstable processes based on gain and phase-margin specifications. IEE Proc.-Control Theory Appl. 145(5), 392–396 (1998)

    Google Scholar 

  43. Howze, J.W., Bhattacharyya, S.P.: Robust tracking, error feedback and two degrees of freedom controllers. IEEE Trans. Autom. Control 42(7), 980–984 (1997)

    Article  MathSciNet  Google Scholar 

  44. Hwang, S.H., Shiu, S.J.: A new autotuning method with specifications on dominant pole placement. Int. J. Control 60(2), 265–282 (1994)

    Article  MathSciNet  Google Scholar 

  45. Ioannou, P.A., Fidan, B.: Adaptive Control Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, Philadelphia, PA (2006)

    Book  Google Scholar 

  46. Kalman, R.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5(2), 102–119 (1960)

    MathSciNet  Google Scholar 

  47. Kalman, R.: When is a linear control system optimal? J. Basic Eng. 86(1), 51–60 (1964)

    Article  Google Scholar 

  48. Kaya, I.: Tuning PI controllers for stable processes with specifications on gain and phase margins. ISA Trans. 43(2), 297–304 (2004)

    Article  Google Scholar 

  49. Kaya, I.: Two-degree-of-freedom IMC structure and controller design for integrating processes based on gain and phase-margin specifications. IEE Proc.-Control Theory Appl. 151(4), 481–487 (2004)

    Google Scholar 

  50. Keel, L.H., Bhattacharyya, S.P.: Robust, fragile, or optimal? IEEE Trans. Autom. Control 42(8), 1098–1105 (1997)

    Article  MathSciNet  Google Scholar 

  51. Khalil, H.K.: Nonlinear Systems. MacMillan, London (1992)

    MATH  Google Scholar 

  52. Kline, R.: Harold Black and the negative-feedback amplifier. IEEE Control Syst. 13(4), 82–85 (1993)

    Article  Google Scholar 

  53. Krohling, R.A., Jaschek, H., Rey, J.P.: Designing PI/PID controllers for a motion control system based on genetic algorithms. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 125–130 (1997)

    Google Scholar 

  54. Lee, C.H.: A survey of PID controller design based on gain and phase margins. Int. J. Comput. Cogn. 2(3), 63–100 (2004)

    Google Scholar 

  55. Lennartson, B., Kristiansson, B.: Robust and optimal tuning of PI and PID controllers. IEE Proc.-Control Theory Appl. 149(1), 17–25 (2002)

    Google Scholar 

  56. Li, K.: PID tuning for optimal closed-loop performance with specified gain and phase margins. IEEE Trans. Control Syst. Technol. 21(3), 1024–1030 (2013)

    Article  Google Scholar 

  57. Lillacci, G., Aoki, S., Gupta, A., Baumschlager, A., Schweingruber, D., Khammash, M.: A universal rationally-designed biomolecular integral feedback controller for robust perfect adaptation. Nat. Biotechnol. (To appear)

    Google Scholar 

  58. Michael, A.J., Mohammad, H.M.: PID Control New Identification and Design Methods. Springer, London (2005)

    Google Scholar 

  59. Natarajan, K.: Robust PID controller design for hydroturbines. IEEE Trans. Energy Convers. 20(3), 661–667 (2005)

    Article  Google Scholar 

  60. Paraskevopoulos, P., Pasgianos, G., Arvanitis, K.: PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications. IEEE Trans. Control Syst. Technol. 14(5), 926–936 (2006)

    Article  Google Scholar 

  61. Patel, H.B., Chaphekar, S.N.: Developments in PID controllers: literature survey. Int. J. Eng. Innov. Res. 1(5), 425–430 (2012)

    Google Scholar 

  62. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 252–265 (1986)

    Article  Google Scholar 

  63. Seborg, D.E., Edgar, T.F., Shah, S.L.: Adaptive control strategies for process control: a survey. AIChE J. 32(6), 881–913 (1986)

    Article  Google Scholar 

  64. Senthilkumar, M., Lincon, S.A.: Multiloop PI controller for achieving simultaneous time and frequency domain specifications. J. Eng. Sci. Technol. 10(8), 1103–1115 (2015)

    Google Scholar 

  65. Singh, B., Payasi, R.P., Verma, K.S., Kumar, V., Gangwar, S.: Design of controllers PD, PI & PID for speed control of DC motor using IGBT based chopper. Ger. J. Renew. Sustain. Energy Res. (GJRSER) 1(1), 29–49 (2013)

    Google Scholar 

  66. Srivastava, S., Pandit, V.S.: A PI/PID controller for time delay systems with desired closed loop time response and guaranteed gain and phase margins. J. Process Control 37, 70–77 (2016)

    Article  Google Scholar 

  67. Tan, K.K., Wang, Q.G., Hang, C.C.: Advances in PID Control. Springer Science and Business Media, Berlin (2012)

    Google Scholar 

  68. Visioli, A., Zhong, Q.: Control of Integral Processes with Dead Time. Springer Science and Business Media, Berlin (2010)

    MATH  Google Scholar 

  69. Wang, Q.G., Fung, H.W., Zhang, Y.: PID tuning with exact gain and phase margins. ISA Trans. 38(3), 243–249 (1999)

    Article  Google Scholar 

  70. Wang, Q.G., Zhang, Z., Astrom, K.J., Chek, L.S.: Guaranteed dominant pole placement with PID controllers. J. Process Control 19(2), 349–352 (2009)

    Article  Google Scholar 

  71. Wang, Y.G., Shao, H.H.: PID autotuner based on gain- and phase-margin specifications. Ind. Eng. Chem. Res. 38(8), 3007–3012 (1999)

    Article  Google Scholar 

  72. Wang, Y.J.: Determination of all feasible robust PID controllers for open-loop unstable plus time delay processes with gain margin and phase margin specifications. ISA Trans. 53(2), 628–646 (2014)

    Article  Google Scholar 

  73. Wonham, W.M., Pearson, J.B.: Regulation and internal stabilization in linear multivariable systems. SIAM J. Control 12, 5–8 (1974)

    Article  MathSciNet  Google Scholar 

  74. Zhang, Y., Wang, Q.G., Astrom, K.J.: Dominant pole placement for multi-loop control systems. Automatica 38(7), 1213–1220 (2002)

    Article  MathSciNet  Google Scholar 

  75. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Trans. ASME, 759–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjin Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz-Rodríguez, I.D., Han, S., Bhattacharyya, S.P. (2019). Introduction to Control. In: Analytical Design of PID Controllers. Springer, Cham. https://doi.org/10.1007/978-3-030-18228-1_1

Download citation

Publish with us

Policies and ethics