Skip to main content

Part of the book series: Fascinating Life Sciences ((FLS))

  • 998 Accesses

Abstract

The major goal of developmental biology is to understand how the complex multicellular structure of an organism is built from a simple fertilized egg. Development is a complex and dynamic process that involves multicellular coordination of growth, cell-cell communication and cell movements, all in a 3D physical space. The ability to visualize cell and molecular level events in living embryos developed in recent years is bringing greater insight about the logic of the developmental processes. However, a comprehensive understanding of development usually requires the use of sophisticated computational models that simulate its dynamics and predict wild-type and mutant phenotypes. Building models that simulate morphogenetic processes, on the organ or even the whole embryo level, will play a decisive role to achieve a deep understanding of how organismal morphology originates and, ultimately, how it evolves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667

    Article  Google Scholar 

  • Alberch P (1982) Developmental constraints in evolutionary processes. In: Bonner JT (ed) Evolution and development. Springer, Berlin, pp 313–332

    Chapter  Google Scholar 

  • Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill SW, Heisenberg CP (2012) Forces driving epithelial spreading in zebrafish gastrulation. Science 338(6104):257–260. https://doi.org/10.1126/science.1224143

    Article  CAS  PubMed  Google Scholar 

  • Biggs LC, Mikkola ML (2014) Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 25–26:11–21

    Article  Google Scholar 

  • Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, Swoger J, Sharpe J (2010) The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 8:e1000420

    Article  Google Scholar 

  • Busser BW, Bulyk ML, Michelson AM (2008) Toward a systems-level understanding of developmental regulatory networks. Curr Opin Genet Dev 18:521–529

    Article  CAS  Google Scholar 

  • Campàs O, Mammoto T, Hasso S, Sperling R, O’Connell D, Bischof AG, Maas R, Weitz DA, Mahadevan L, Ingber DE (2014) Quantifying cell-generated mechanical forces within living embryonic tissues. Nat Methods 11(2):183–189. https://doi.org/10.1038/nmeth.2761

    Article  CAS  PubMed  Google Scholar 

  • Castro-Gonzalez C, Luengo-Oroz MA, Douloquin L, Savy T, Melani C, Desnoulez S, Ledesma-Carbayo MJ, Bourginey P, Santos A (2010) Towards a digital model of zebrafish embryogenesis. Integration of cell tracking and gene expression quantification. Conf Proc IEEE Eng Med Biol Soc 2010:5520–5523

    PubMed  Google Scholar 

  • Chodankar R, Chang CH, Yue Z, Jiang TX, Suksaweang S, Burrus L, Chuong CM, Widelitz R (2003) Shift of localized growth zones contributes to skin appendage morphogenesis: role of the Wnt/beta-catenin pathway. J Invest Dermatol 120:20–26

    Article  CAS  Google Scholar 

  • Chuong CM, Chodankar R, Widelitz RB, Jiang TX (2000) Evo-Devo of feathers and scales: building complex epithelial appendages. Curr Opin Genet Dev 10:449–456

    Article  CAS  Google Scholar 

  • Daniels BR, Masi BC, Wirtz D (2006) Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys J 90(12):4712–4719

    Article  CAS  Google Scholar 

  • Delile J, Herrmann M, Peyriéras N, Doursat R (2017) A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat Commun 8:13929. https://doi.org/10.1038/ncomms13929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T, Dobzhansky TG (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Drasdo D, Hoehme S, Block M (2007) On the role of physics in the growth and pattern formation of multi-cellular systems: what can we learn from individual-cell based models? J Stat Phys 128:287

    Article  Google Scholar 

  • Friebel A, Neitsch J, Johann T, Hammad S, Hengstler JG, Drasdo D, Hoehme S (2015) TiQuant: software for tissue analysis, quantification and surface reconstruction. Bioinformatics 31(19):3234–3236

    Article  CAS  Google Scholar 

  • Gilbert SF (2003) The morphogenesis of evolutionary developmental biology. Int J Dev Biol 47:467–477

    PubMed  Google Scholar 

  • Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol 2(9):424–434. https://doi.org/10.1039/c0ib00040j

    Article  CAS  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    Article  CAS  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  CAS  Google Scholar 

  • Hall BK (2000) Balfour, Garstang and de Beer: the first century of evolutionary embryology. Am Zool 40:718–728

    Google Scholar 

  • Hansen TF, Wagner GP (2001) Epistasis and the mutation load: a measurement-theoretical approach. Genetics 158:477–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harjunmaa E, Seidel K, Häkkinen T, Renvoise E, Corfe IJ, Kallonen A, Zhang ZQ, Evans AR, Mikkola ML, Salazar-Ciudad I, Klein OD, Jernvall J (2014) Replaying evolutionary transitions from the dental fossil record. Nature 512:44–48

    Article  CAS  Google Scholar 

  • Hoh JH, Schonenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 107(5):1105–1114

    PubMed  Google Scholar 

  • Honda H, Tanemura M, Nagai T (2004) A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J Theor Biol 226:439–453

    Article  Google Scholar 

  • Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Jung HS, Francis-West PH, Widelitz RB, Jiang TX, Ting-Berreth S, Tickle C, Wolpert L, Chuong CM (1998) Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol 196:11–23

    Article  CAS  Google Scholar 

  • Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohyn TJ, Meilhac SM (2017) A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 6:1–35. https://doi.org/10.7554/eLife.28951

    Article  Google Scholar 

  • Li S (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  CAS  Google Scholar 

  • Lobo D, Levin M (2015) Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration. PLoS Comput Biol 11(6):e1004295. https://doi.org/10.1371/journal.pcbi.1004295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Tournier AL, Hoppe A, Kester L, Thompson BJ, Tapon N (2013) Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J 32(21):2790–2803. https://doi.org/10.1038/emboj.2013.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Riera M, Brun-Usan M, Zimm R, Valikangas T, Salazar-Ciudad I (2015) Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model. Bioinformatics 32:219–225. https://doi.org/10.1093/bioinformatics/btv527

    Article  CAS  PubMed  Google Scholar 

  • McGhee GR (2001) Exploring the spectrum of existent, nonexistent and impossible biological form. Trends Ecol Evol 16:172–173

    Article  Google Scholar 

  • Menshykau D, Blanc P, Unal E, Sapin V, Iber D (2014) An interplay of geometry and signaling enables robust lung branching morphogenesis. Development 141:4526–4536

    Article  CAS  Google Scholar 

  • Merks RMH, Perryn ED, Shirinifard A, Glazier JA (2008) Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol 4:e1000163

    Article  Google Scholar 

  • Mirams GR, Arthurs CJ, Bernabeu MO et al (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9:e1002970

    Article  CAS  Google Scholar 

  • Morita R, Kihira M, Nakatsu Y, Nomoto Y, Ogawa M, Ohashi K, Mizuno K, Tachikawa T, Ishimoto Y, Morishita Y, Tsuji T (2016) Coordination of cellular dynamics contributes to tooth epithelium deformations. PLoS One 11:e0161336

    Article  Google Scholar 

  • Newman TJ (2005) Modeling multicellular systems using subcellular elements. Math Biosci Eng 2:613–624

    Article  CAS  Google Scholar 

  • Newman SA, Bhat R (2007) Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res C Embryo Today 81:305–319

    Article  CAS  Google Scholar 

  • Newman SA, Müller GB (2000) Epigenetic mechanisms of character origination. J Exp Zool 288:304–317

    Article  CAS  Google Scholar 

  • Newman SA, Bhat R, Mezentseva NV (2009) Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 34:553–572

    Article  CAS  Google Scholar 

  • Okuda S, Inoue Y, Eiraku M, Adachi T, Sasai Y (2014) Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomech Model Mechanobiol 14(2):413–425. https://doi.org/10.1007/s10237-014-0613-5

    Article  PubMed  Google Scholar 

  • Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456

    Article  CAS  Google Scholar 

  • Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–570

    Article  CAS  Google Scholar 

  • Ray RP, Matamoro-Vidal A, Ribeiro PS, Tapon N, Houle D, Salazar-Ciudad I, Thomson BJ (2015) Patterned anchorage to the apical extracellular matrix defines tissue shape in the developing appendages of Drosophila. Dev Cell 34:310–322

    Article  CAS  Google Scholar 

  • Salazar-Ciudad I (2006) Developmental constraints vs. variational properties: how pattern formation can help to understand evolution and development. J Exp Zool B Mol Dev Evol 306:107–125

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2002) A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci USA 99:8116–8120

    Article  CAS  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2005) Graduality and innovation in the evolution of complex phenotypes: insights from development. J Exp Zool B Mol Dev Evol 304:619–631

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586

    Article  CAS  Google Scholar 

  • Salazar-Ciudad I, Marín-Riera M (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature 497:361–364

    Article  CAS  Google Scholar 

  • Salazar-Ciudad I, Newman SA, Solé RV (2001) Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evol Dev 3:84–94

    Article  CAS  Google Scholar 

  • Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130:2027–2037

    Article  CAS  Google Scholar 

  • Sharpe J (2017) Computer modeling in developmental biology: growing today, essential tomorrow. Development 144(23):4214–4225. https://doi.org/10.1242/dev.151274

    Article  CAS  PubMed  Google Scholar 

  • Sheeba CJ, Andrade RP, Palmeirim I (2016) Mechanisms of vertebrate embryo segmentation: common themes in trunk and limb development. Semin Cell Dev Biol 49:125–134

    Article  Google Scholar 

  • Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (2012) Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–366

    Article  Google Scholar 

  • Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation environment for morphogenetic problems. Bioinformatics 31:2340–2347

    Article  CAS  Google Scholar 

  • Ten Tusscher KH, Hogeweg P (2011) Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability. PLoS Comput Biol 7:e1002208

    Article  Google Scholar 

  • Thom R (1976) Structural stability and morphogenesis. Pattern Recognit 8:61

    Article  Google Scholar 

  • Tsiairis CD, Aulehla A (2016) Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164:656–667

    Article  CAS  Google Scholar 

  • Vroomans RMA, Hogeweg P, ten Tusscher KHWJ (2015) Segment-specific adhesion as a driver of convergent extension. PLoS Comput Biol 11(2):1–24. https://doi.org/10.1371/journal.pcbi.1004092

    Article  CAS  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41:10–13

    Article  CAS  Google Scholar 

  • Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R (2014) The evolution of phenotypic correlations and “developmental memory”. Evolution 68:1124–1138

    Article  Google Scholar 

  • Webster G, Goodwin B (1996) Form and transformation: generative and relational principles in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Zagorski M, Tabata Y, Brandenberg N, Lutolf MP, Tkačik G, Bollenbach T, Briscoe J, Kicheva A (2017) Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science 356(6345):1379–1383. https://doi.org/10.1126/science.aam5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Marín-Riera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marín-Riera, M., Brun-Usan, M. (2019). Can We Compute the Embryo?. In: Martín-Durán, J., Vellutini, B. (eds) Old Questions and Young Approaches to Animal Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-18202-1_12

Download citation

Publish with us

Policies and ethics