Skip to main content

How Does Modularity in the Genotype–Phenotype Map Shape Development and Evolution?

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Traits do not evolve independently, as genetic and developmental associations affect the variation that is expressed in populations and that is available for evolutionary change. In this chapter, we explore the causes and consequences of structured variation, introducing the concept of modularity, exploring some possible causes for modular organization in different levels, and, finally, discussing how the introduction of new variation can evolve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool 288(3):242–283

    Article  CAS  PubMed  Google Scholar 

  • Assis APA, Patton JL, Hubbe A, Marroig G (2016) Directional selection effects on patterns of phenotypic (co)variation in wild populations. Proc R Soc B Biol Sci 283(1843):20161615

    Article  Google Scholar 

  • Careau V, Wolak ME, Carter PA, Garland T Jr (2015) Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype. Proc R Soc B Biol Sci 282(1819):20151119

    Article  Google Scholar 

  • Cheverud JM (1982) Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36(3):499–516

    Article  PubMed  Google Scholar 

  • Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol 110(2):155–171

    Article  CAS  PubMed  Google Scholar 

  • Cheverud JM, Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS (2004) Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. J Exp Zool B Mol Dev Evol 302(5):424–435

    Article  PubMed  Google Scholar 

  • Clune J, Mouret J-B, Lipson H (2012) The evolutionary origins of modularity. Proc Biol Sci 280(1755):20122863

    Article  Google Scholar 

  • Darwin C (1872) Origin of species, 6th edn. Dent, London

    Google Scholar 

  • Draghi J, Wagner GP (2008) Evolution of evolvability in a developmental model. Evolution 62(2):301–315

    Article  PubMed  Google Scholar 

  • Espinosa-Soto C, Wagner A (2010) Specialization can drive the evolution of modularity. PLoS Comput Biol 6(3):e1000719

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection: a complete variorum edition. Oxford University Press, Oxford

    Book  Google Scholar 

  • Foster PL, Cairns J (1992) Mechanisms of directed mutation. Genetics 131(4):783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graur D (2015) Molecular and genome evolution. Sinauer, Sunderland

    Google Scholar 

  • Hansen TF (2003) Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69(2–3):83–94

    Article  PubMed  Google Scholar 

  • Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol Syst 37(1):123–157

    Article  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(Suppl 6761):C47–C52

    Article  CAS  PubMed  Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28(6):476–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu Y-Q, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TFC (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci 109(39):15553–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AG, Arnold SJ, Bürger R (2007) The mutation matrix and the evolution of evolvability. Evolution 61(4):727–745

    Article  PubMed  Google Scholar 

  • Jones AG, Bürger R, Arnold SJ (2014) Epistasis and natural selection shape the mutational architecture of complex traits. Nat Commun 5:3709

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112(113):145–164

    Article  PubMed  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33(1):402–416

    Article  PubMed  Google Scholar 

  • Lande R (1980) The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94(1):203–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210

    Article  PubMed  Google Scholar 

  • Lewontin RC (1979) Adaptation. Sci Am 293(3):156–169

    Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104(Suppl 1(Table 1)):8597–8604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Melo D, Marroig G (2015) Directional selection can drive the evolution of modularity in complex traits. Proc Natl Acad Sci 112(2):470–475

    Article  CAS  PubMed  Google Scholar 

  • Melo D, Marroig G (2016) The effect of directional selection on pleiotropy and modularity [version 1; not peer reviewed]. F1000Research 5:229 (poster)

    Google Scholar 

  • Melo D, Porto A, Cheverud JM, Marroig G (2016) Modularity: genes, development, and evolution. Annu Rev Ecol Evol Syst 47(1):463–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Mezey JG, Cheverud JM, Wagner GP (2000) Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics 156(1):305–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson R, Miller E (1958) Morphological integration. University of Chicago Press, Chicago

    Google Scholar 

  • Orr HA (2000) Adaptation and the cost of complexity. Evolution 54(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Pavlicev M, Hansen TF (2011) Genotype-phenotype maps maximizing evolvability: modularity revisited. Evol Biol 38(4):371–389

    Article  Google Scholar 

  • Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM (2008) Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62(1):199–213

    PubMed  Google Scholar 

  • Pavlicev M, Cheverud JM, Wagner GP (2011) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc Biol Sci 278(1713):1903–1912

    Article  PubMed  Google Scholar 

  • Penna A, Melo D, Bernardi S, Oyarzabal MI, Marroig G (2017) The evolution of phenotypic integration: how directional selection reshapes covariation in mice. Evolution 71:2370–2380

    Article  PubMed  PubMed Central  Google Scholar 

  • Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Article  CAS  PubMed  Google Scholar 

  • Stadler PF, Stadler BMR (2006) Genotype-phenotype maps. Biol Theory 1(3):268–279

    Article  Google Scholar 

  • Stadler BMR, Stadler PF, Wagner GP, Fontana W (2001) The topology of the possible: formal spaces underlying patterns of evolutionary change. J Theor Biol 213(2):241–274

    Article  CAS  PubMed  Google Scholar 

  • Steppan SJ, Phillips PC, Houle D (2002) Comparative quantitative genetics: evolution of the G matrix. Trends Ecol Evol 17(7):320–327

    Article  Google Scholar 

  • Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3):967–976

    Article  PubMed  Google Scholar 

  • Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 12(3):204–213

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12). https://doi.org/10.1038/nrg2267

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM (2008) Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature 452(7186):470–472

    Article  CAS  PubMed  Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40(1):41–59

    Article  Google Scholar 

  • Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R (2014) The evolution of phenotypic correlations and “developmental memory”. Evolution 68(4):1124–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch JJ, Waxman D, Kingdom U, Welch JJ, Waxman D (2003) Modularity and the cost of complexity. Evolution 57(8):1723–1734

    Article  PubMed  Google Scholar 

  • Wolf JB, Leamy LJ, Routman EJ, Cheverud JM (2005) Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice. Genetics 171(2):683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf JB, Pomp D, Eisen EJ, Cheverud JM, Leamy LJ (2006) The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evol Dev 8(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Young NM, Wagner GP, Hallgrímsson B (2010) Development and the evolvability of human limbs. Proc Natl Acad Sci USA 107(8):3400–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Melo .

Editor information

Editors and Affiliations

Glossary

Complex phenotype

Multivariate phenotypes, composed by several interacting traits and controlled by several loci. Gene expression, body composition, and skeletal structures are examples of complex phenotypes.

Epistasis

Changes in phenotype caused by interactions between two of more loci.

Genetic architecture

The structure of the relation between genotype and phenotype. Which regions of the genome affect which phenotypes.

Genetic effects

How a particular allele is expected to change the phenotype of an individual in relation to the population mean. This can depend on the population allele frequencies, other alleles, or the environment.

Genotype–phenotype map

The mapping between a genetic and phenotypic variants.

Modularity

A pattern of association between parts where some groups of elements are strongly interrelated among themselves, and elements belonging to different groups are weakly interrelated.

Pleiotropy

The phenomenon in which an allele affects multiple distinct traits.

Variation and variability

Variation refers to the realized differences between individuals in a population, while variability is the ability to generate this variation.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melo, D. (2019). How Does Modularity in the Genotype–Phenotype Map Shape Development and Evolution?. In: Martín-Durán, J., Vellutini, B. (eds) Old Questions and Young Approaches to Animal Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-18202-1_11

Download citation

Publish with us

Policies and ethics