Skip to main content

Impact of Ohmic Processing on Food Quality and Composition

  • Chapter
  • First Online:
Effect of Emerging Processing Methods on the Food Quality

Abstract

One of the novel promising technologies to pasteurize, sterilize, or cook a wide range of food products (e.g. fruits and vegetables, dairy products, and meat products) is ohmic heating, which usually helps to obtain a high product quality (Fig. 1.1). Ohmic heating is literally an electric resistance heating method, in which an alternating current (50 Hz to 100 kHz) is passed through the food material. In a flow through the unit, several electrode arrangements such as a parallel plate, colinear, parallel rod, and staggered rod electrodes are used depending on the required operation. However, alternative electrode arrangements could also be applied. Similar to other volumetric heating methods, the elimination of heating surfaces in contact with foodstuff in ohmic heating helps to reduce thermal degradation and consequently an enhancement in product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir, M., & Jittanit, W. (2017). Ohmic heating treatment for Gac aril oil extraction: Effects on extraction efficiency, physical properties and some bioactive compounds. Innovative Food Science & Emerging Technologies, 41, 224–234.

    Article  CAS  Google Scholar 

  • Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J.-P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science & Emerging Technologies, 33, 397–404.

    Article  CAS  Google Scholar 

  • Anderson, A. K., & Finkelstein, R. (1919). A study of the electro-pure process of treating milk. Journal of Dairy Science, 2(5), 374–406.

    Article  CAS  Google Scholar 

  • Anderson, D. R. (2008). Ohmic heating as an alternative food processing technology (Master’s thesis). Kansas state University, Kansas, USA.

    Google Scholar 

  • Athmaselvi, K. A., Kumar, C., & Poojitha, P. (2017). Influence of temperature, voltage gradient and electrode on ascorbic acid degradation kinetics during ohmic heating of tropical fruit pulp. Journal of Food Measurement and Characterization, 11(1), 144–155.

    Article  Google Scholar 

  • Avasoo, M., & Johansson, L. (2011). Evaluation of thermal processing technologies for strawberry jam (Master’s thesis in food technology). Sweden: Lund University.

    Google Scholar 

  • Azzara, C. D., & Campbell, L. B. (1992). Off-flavors of dairy products. In G. Charalambous (Ed.), Developments in food science (Vol. 28, pp. 329–374). Amsterdam, The Netherlands: Elsevier Science Publishers.

    Google Scholar 

  • Bastías, J. M., Moreno, J., Pia, C., Reyes, J., Quevedo, R., & Muñoz, O. (2015). Effect of ohmic heating on texture, microbial load, and cadmium and lead content of Chilean blue mussel (Mytilus chilensis). Innovative Food Science & Emerging Technologies, 30, 98–102.

    Article  CAS  Google Scholar 

  • Biss, C., Coombes, S., & Skudder, P. (1989). Process engineering in the food industry: Developments and opportunities. In R. W. Field & J. A. Howell (Eds.), Process engineering in the food industry: Developments and opportunities. Essex, EN: Elsevier Applied Science.

    Google Scholar 

  • Bourne, M. C. (2002). Food texture and viscosity: Concept and measurement. San Diego, CA: Academic.

    Book  Google Scholar 

  • Bozkurt, H., & Icier, F. (2010). Ohmic cooking of ground beef: Effects on quality. Journal of Food Engineering, 96(4), 481–490.

    Article  Google Scholar 

  • Castro, I., Macedo, B., Teixeira, J. A., & Vicente, A. A. (2004). The effect of electric field on important food-processing enzymes: Comparison of inactivation kinetics under conventional and ohmic heating. Journal of Food Science, 69(9), C696–C701.

    Article  CAS  Google Scholar 

  • Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science & Emerging Technologies, 5(1), 27–36.

    Article  CAS  Google Scholar 

  • Chai, P. P., & Park, J. W. (2007). Physical properties of fish proteins cooked with starches or protein additives under ohmic heating. Journal of Food Quality, 30(5), 783–796.

    Article  CAS  Google Scholar 

  • Chakraborty, I., & Athmaselvi, K. A. (2014). Changes in physicochemical properties of guava juice during ohmic heating. Journal of Ready to Eat Food, 1(4), 152–157.

    Google Scholar 

  • Chiavaro, E., Barbanti, D., Vittadini, E., & Massini, R. (2006). The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). Journal of Food Engineering, 77(1), 169–178.

    Article  Google Scholar 

  • Choi, M. H., Kim, G. H., & Lee, H. S. (2002). Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Research International, 35(8), 753–759.

    Article  CAS  Google Scholar 

  • Christian, G., & Leadley, C. (2006). New technologies bulletin 32 (No. GL55 6LD). UK: Campden & Chorleywood Food Research Association, Chipping Campden, Gloucestershire.

    Google Scholar 

  • Dai, Y., Lu, Y., Wu, W., Lu, X., Han, Z., Liu, Y., … Dai, R. (2014). Changes in oxidation, color and texture deteriorations during refrigerated storage of ohmically and water bath-cooked pork meat. Innovative Food Science & Emerging Technologies, 26, 341–346.

    Article  CAS  Google Scholar 

  • Damodaran, S., Parkin, K., & Fennema, O. R. (2008). Fennema’s food chemistry. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Damyeh, M. S., Niakousari, M., Golmakani, M. T., & Saharkhiz, M. J. (2016). Microwave and ohmic heating impact on the in situ hydrodistillation and selective extraction of Satureja macrosiphonia essential oil. Journal of Food Processing and Preservation, 40(4), 647–656.

    Article  CAS  Google Scholar 

  • Damyeh, M. S., Niakousari, M., Saharkhiz, M. J., & Golmakani, M. T. (2016). Evaluating the effect of essential oil extraction method from Satureja macrosiphonia on its biological activities: Ohmic-and microwave-assisted hydrodistillation. Journal of Food Processing and Preservation, 40(4), 697–706.

    Article  CAS  Google Scholar 

  • Dima, F., Istrati, D., Garnai, M., Serea, V., & Vizireanu, C. (2015). Study on obtaining vegetables juices with high antioxidant potential, preserved by ohmic pasteurization. Journal of Agroalimentary Processes and Technologies, 21, 67–74.

    CAS  Google Scholar 

  • Duygu, B., & Ümit, G. (2015). Application of ohmic heating system in meat thawing. Procedia - Social and Behavioral Sciences, 195, 2822–2828.

    Article  Google Scholar 

  • Engchuan, W., Jittanit, W., & Garnjanagoonchorn, W. (2014). The ohmic heating of meat ball: Modeling and quality determination. Innovative Food Science & Emerging Technologies, 23, 121–130.

    Article  Google Scholar 

  • Farahnaky, A., Azizi, R., & Gavahian, M. (2012). Accelerated texture softening of some root vegetables by Ohmic heating. Journal of Food Engineering, 113(2), 275–280.

    Article  Google Scholar 

  • Foegeding, E. A., Allen, C. E., & Dayton, W. R. (1986). Effect of heating rate on thermally formed myosin, fibrinogen and albumin gels. Journal of Food Science, 51(1), 104–108.

    Article  CAS  Google Scholar 

  • Fuentes, V., Ventanas, J., Morcuende, D., Estévez, M., & Ventanas, S. (2010). Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Science, 85(3), 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Ganhão, R., Morcuende, D., & Estévez, M. (2010). Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Science, 85(3), 402–409.

    Article  PubMed  CAS  Google Scholar 

  • Gatellier, P., Kondjoyan, A., Portanguen, S., & Santé-Lhoutellier, V. (2010). Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality. Meat Science, 85(4), 645–650.

    Article  CAS  PubMed  Google Scholar 

  • Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., & Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT - Food Science and Technology, 53(2), 569–579.

    Article  CAS  Google Scholar 

  • Hashemi Gahruie, H., Hosseini, S. M. H., Taghavifard, M. H., Eskandari, M. H., Golmakani, M.-T., & Shad, E. (2017). Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with shirazi thyme, cinnamon, and rosemary extracts. Journal of Food Quality. https://doi.org/10.1155/2017/6350156

    Article  CAS  Google Scholar 

  • Hradecky, J., Kludska, E., Belkova, B., Wagner, M., & Hajslova, J. (2017). Ohmic heating: A promising technology to reduce furan formation in sterilized vegetable and vegetable/meat baby foods. Innovative Food Science and Emerging Technologies, 43, 1–6.

    Article  CAS  Google Scholar 

  • Hurtaud, C., & Peyraud, J. L. (2007). Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability. Journal of Dairy Science, 90(11), 5134–5145.

    Article  CAS  PubMed  Google Scholar 

  • Icier, F. (2009). Influence of ohmic heating on rheological and electrical properties of reconstituted whey solutions. Food and Bioproducts Processing, 87(4), 308–316.

    Article  CAS  Google Scholar 

  • Icier, F., Izzetoglu, G. T., Bozkurt, H., & Ober, A. (2010). Effects of ohmic thawing on histological and textural properties of beef cuts. Journal of Food Engineering, 99(3), 360–365.

    Article  Google Scholar 

  • Irudayaraj, J., McMahon, D., & Reznik, D. (2000). Ohmic heating for UHT milk. Presented at the Annual Meeting, Institute of Food Technologists, Dallas, Texas.

    Google Scholar 

  • Jaeschke, D. P., Marczak, L. D. F., & Mercali, G. D. (2016). Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chemistry, 199, 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., & Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies, 42, 16–24.

    Article  CAS  Google Scholar 

  • Kamali, E., & Farahnaky, A. (2015). Ohmic-assisted texture softening of cabbage, turnip, potato and radish in comparison with microwave and conventional heating. Journal of Texture Studies, 46(1), 12–21.

    Article  Google Scholar 

  • Khajehei, F., Niakousari, M., Seidi Damyeh, M., Merkt, N., Claupein, W., & Graeff-Hoenninger, S. (2017). Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius Poepp.) leaves: Comparison with conventional decoction. Molecules, 22(12). https://doi.org/10.3390/molecules22122043

    Article  PubMed Central  CAS  Google Scholar 

  • Kim, J.-Y., Hong, G.-P., Park, S.-H., Spiess, W. E., & Min, S.-G. (2006). Effect of ohmic thawing on physico-chemical properties of frozen hamburger patties. Korean Journal for Food Science of Animal Resources, 26(2), 223–228.

    Google Scholar 

  • Kim, N. H., Ryang, J. H., Lee, B. S., Kim, C. T., & Rhee, M. S. (2017). Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology, 246, 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. H., Huff-Lonergan, E., Sebranek, J. G., & Lonergan, S. M. (2010). High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Science, 85(4), 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Koubaa, M., Roselló-Soto, E., Barba-Orellana, S., & Barba, F. J. (2016). Novel thermal technologies and fermentation. In K. S. Ojha & B. K. Tiwari (Eds.), Novel food fermentation technologies (pp. 155–163). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Lascorz, D., Torella, E., Lyng, J. G., & Arroyo, C. (2016). The potential of ohmic heating as an alternative to steam for heat processing shrimps. Innovative Food Science & Emerging Technologies, 37, 329–335.

    Article  CAS  Google Scholar 

  • Leizerson, S., & Shimoni, E. (2005a). Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. Journal of Agricultural and Food Chemistry, 53(9), 3519–3524.

    Article  CAS  PubMed  Google Scholar 

  • Leizerson, S., & Shimoni, E. (2005b). Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of Agricultural and Food Chemistry, 53(10), 4012–4018.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Chen, Y. R. (2001). Analysis of visible reflectance spectra of stored, cooked and diseased chicken meats. Meat Science, 58(4), 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Louarme, L., & Billaud, C. (2012). Evaluation of ascorbic acid and sugar degradation products during fruit dessert processing under conventional or ohmic heating treatment. LWT - Food Science and Technology, 49(2), 184–187.

    Article  CAS  Google Scholar 

  • Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., & Skibsted, L. H. (2007). High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science, 77(3), 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Lutz, M., Henríquez, C., & Escobar, M. (2011). Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. Journal of Food Composition and Analysis, 24(1), 49–54.

    Article  CAS  Google Scholar 

  • Mathoniere, C., Mioche, L., Dransfield, E., & Culioli, J. (2000). Meat texture characterisation: Comparison of chewing patterns, sensory and mechanical measures. Journal of Texture Studies, 31(2), 183–203.

    Article  Google Scholar 

  • Mercali, G. D., Gurak, P. D., Schmitz, F., & Marczak, L. D. F. (2015). Evaluation of non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba (Myrciaria cauliflora) juice. Food Chemistry, 171, 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Mercali, G. D., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2012). Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT – Food Science and Technology, 47(1), 91–95.

    Article  CAS  Google Scholar 

  • Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1–7.

    Article  CAS  Google Scholar 

  • Mesías, M., Wagner, M., George, S., & Morales, F. J. (2016). Impact of conventional sterilization and ohmic heating on the amino acid profile in vegetable baby foods. Innovative Food Science & Emerging Technologies, 34, 24–28.

    Article  CAS  Google Scholar 

  • Mojtahed Zadeh Asl, R., Niakousari, M., Hashemi Gahruie, H., Saharkhiz, M. J., & Mousavi Khaneghah, A. (2018). Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Research International, 107, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, J., Echeverria, J., Silva, A., Escudero, A., Petzold, G., Mella, K., & Escudero, C. (2017). Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology. Food Science and Technology International, 23(5), 448–456.

    Article  CAS  PubMed  Google Scholar 

  • Niakousari, M., Hashemi Gahruie, H., Razmjooei, M., Roohinejad, S., & Greiner, R. (2018). Effects of innovative processing technologies on microbial targets based on food categories: Comparing traditional and emerging technologies for food preservation. In F. J. Barba, A. S. Sant’Ana, V. Orlien, & M. Koubaa (Eds.), Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms (pp. 133–185). London, UK: Academic Press, Elsevier.

    Chapter  Google Scholar 

  • Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends in Food Science & Technology, 19(6), 320–328.

    Article  CAS  Google Scholar 

  • Olivera, D. F., Salvadori, V. O., & Marra, F. (2013). Ohmic treatment of fresh foods: Effect on textural properties. International Food Research Journal, 20(4), 1617–1621.

    Google Scholar 

  • Özkan, N., Ho, I., & Farid, M. (2004). Combined ohmic and plate heating of hamburger patties: Quality of cooked patties. Journal of Food Engineering, 63(2), 141–145.

    Article  Google Scholar 

  • Parmar, P. R., Tripathi, S., Tiwari, S., & Singh, R. (2016). Fabrication and performance evaluation of ohmic heater. International Journal of Research in Science and Technology, 6(4), 59–69.

    Google Scholar 

  • Patyukov, S., & Pacinovski, N. (2015). Effect of traditional and ohmic heating on fat stability of pufa-fortified cooked sausages. Macedonian Journal of Animal Science, 5(2), 107–112.

    Google Scholar 

  • Pedersen, S. J., Feyissa, A. H., Brøkner Kavli, S. T., & Frosch, S. (2016). An investigation on the application of ohmic heating of cold water shrimp and brine mixtures. Journal of Food Engineering, 179, 28–35.

    Article  Google Scholar 

  • Pereira, R. N., Martins, R. C., & Vicente, A. A. (2008). Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. Journal of Dairy Science, 91(8), 2925–2937.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, R. N., Rodrigues, R. M., Ramos, Ó. L., Xavier Malcata, F., Teixeira, J. A., & Vicente, A. A. (2016). Production of whey protein-based aggregates under ohmic heating. Food and Bioprocess Technology, 9(4), 576–587.

    Article  CAS  Google Scholar 

  • Purchas, R. W., Wilkinson, B. H. P., Carruthers, F., & Jackson, F. (2014). A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. Journal of Food Composition and Analysis, 35(2), 75–82.

    Article  CAS  Google Scholar 

  • Rahman, S. (2007). Handbook of food preservation. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Ramaswamy, H. S., Marcotte, M., Sastry, S., & Abdelrahim, K. (2014). Ohmic heating in food processing. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Roberts, J. S., Balaban, M. O., Zimmerman, R., & Luzuriaga, D. (1998). Design and testing of a prototype ohmic thawing unit. Computers and Electronics in Agriculture, 19(2), 211–222.

    Article  Google Scholar 

  • Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods (ILSI press). Washington, D.C.: ILSI Press.

    Google Scholar 

  • Roux, S., Courel, M., Ait-Ameur, L., Birlouez-Aragon, I., & Pain, J.-P. (2009). Kinetics of Maillard reactions in model infant formula during UHT treatment using a static batch ohmic heater. Dairy Science & Technology, 89(3), 349–362.

    Article  CAS  Google Scholar 

  • Roux, S., Courel, M., Birlouez-Aragon, I., Municino, F., Massa, M., & Pain, J.-P. (2016). Comparative thermal impact of two UHT technologies, continuous ohmic heating and direct steam injection, on the nutritional properties of liquid infant formula. Journal of Food Engineering, 179, 36–43.

    Article  CAS  Google Scholar 

  • Santé-Lhoutellier, V., Astruc, T., Marinova, P., Greve, E., & Gatellier, P. (2008). Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Journal of Agricultural and Food Chemistry, 56(4), 1488–1494.

    Article  PubMed  CAS  Google Scholar 

  • Sarkis, J. R., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2013). Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT – Food Science and Technology, 51(1), 79–85.

    Article  CAS  Google Scholar 

  • Seidi Damyeh, M., & Niakousari, M. (2016). Impact of ohmic-assisted hydrodistillation on kinetics data, physicochemical and biological properties of Prangos ferulacea Lindle. essential oil: Comparison with conventional hydrodistillation. Innovative Food Science & Emerging Technologies, 33, 387–396.

    Article  CAS  Google Scholar 

  • Seidi Damyeh, M., & Niakousari, M. (2017). Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil. Industrial Crops and Products, 98, 100–107.

    Article  CAS  Google Scholar 

  • Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, 104, 86–99.

    Article  CAS  PubMed  Google Scholar 

  • Shirsat, N., Brunton, N. P., Lyng, J. G., McKenna, B., & Scannell, A. (2004). Texture, colour and sensory evaluation of a conventionally and ohmically cooked meat emulsion batter. Journal of the Science of Food and Agriculture, 84(14), 1861–1870.

    Article  CAS  Google Scholar 

  • Shynkaryk, M. V., Ji, T., Alvarez, V. B., & Sastry, S. K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), E493–E500.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, D. P. (1983). Apparatus for heating electrically conductive flowable media. Patent number: DE3160372D1.

    Google Scholar 

  • Simpson, D. P., & Stirling, R. (1995). Ohmic Heater including electrodes arranged along a flow axis to reduce leakage current. Patent number: US5440667A.

    Google Scholar 

  • Singh, A., Santosh, S., Kulshrestha, M., Chand, K., Lohani, U., & Shahi, N. (2013). Quality characteristics of Ohmic heated Aonla (Emblica officinalis Gaertn.) pulp. Indian Journal of Traditional Knowledge, 12(4), 670–676.

    Google Scholar 

  • Stirling, R., & Coombes, S. A. (1990). Apparatus for heating an electrically conductive flowable material flowing through a pipeline. Patent number: US4959525A.

    Google Scholar 

  • Tadpitchayangkoon, P., Park, J. W., & Yongsawatdigul, J. (2012). Gelation characteristics of tropical surimi under water bath and ohmic heating. LWT – Food Science and Technology, 46(1), 97–103.

    Article  CAS  Google Scholar 

  • Thomas, E. L. (1981). Trends in milk flavors. Journal of Dairy Science, 64(6), 1023–1027.

    Article  CAS  Google Scholar 

  • Toldrá, F. (2017). Lawrie’s meat science. Duxford, UK: Woodhead Publishing.

    Google Scholar 

  • Tumpanuvatr, T., & Jittanit, W. (2012). The temperature prediction of some botanical beverages, concentrated juices and purees of orange and pineapple during ohmic heating. Journal of Food Engineering, 113(2), 226–233.

    Article  Google Scholar 

  • Van Buren, J. P. (1979). The chemistry of texture in fruits and vegetables. Journal of Texture Studies, 10(1), 1–23.

    Article  Google Scholar 

  • Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.

    Article  Google Scholar 

  • Waldron, K. W., Parker, M. L., & Smith, A. C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 2(4), 128–146.

    Article  PubMed  Google Scholar 

  • Wells, A. S. (2001). The role of milk in the British diet. International Journal of Dairy Technology, 54(4), 130–134.

    Article  Google Scholar 

  • Wills, T. M., Dewitt, C. A. M., Sigfusson, H., & Bellmer, D. (2006). Effect of cooking method and ethanolic tocopherol on oxidative stability and quality of beef patties during refrigerated storage (oxidative stability of cooked patties). Journal of Food Science, 71(3), C109–C114.

    Article  CAS  Google Scholar 

  • Zell, M., Lyng, J. G., Cronin, D. A., & Morgan, D. J. (2009). Ohmic cooking of whole beef muscle – Optimisation of meat preparation. Meat Science, 81(4), 693–698.

    Article  PubMed  Google Scholar 

  • Zell, M., Lyng, J. G., Cronin, D. A., & Morgan, D. J. (2010a). Ohmic cooking of whole beef muscle-evaluation of the impact of a novel rapid ohmic cooking method on product quality. Meat Science, 86(2), 258–263.

    Article  PubMed  Google Scholar 

  • Zell, M., Lyng, J. G., Cronin, D. A., & Morgan, D. J. (2010b). Ohmic cooking of whole turkey meat – Effect of rapid ohmic heating on selected product parameters. Food Chemistry, 120(3), 724–729.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Niakousari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niakousari, M., Hedayati, S., Gahruie, H.H., Greiner, R., Roohinejad, S. (2019). Impact of Ohmic Processing on Food Quality and Composition. In: Roohinejad, S., Koubaa, M., Greiner, R., Mallikarjunan, K. (eds) Effect of Emerging Processing Methods on the Food Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-18191-8_1

Download citation

Publish with us

Policies and ethics