Skip to main content

Sets with Positive Reach

  • Chapter
  • First Online:
Curvature Measures of Singular Sets

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

The metric projection to a set \(\emptyset \neq X\subset \mathbb {R}^d\) is not determined everywhere unless X is convex and closed. Sets with positive reach are sets with the property that the metric projection is defined on some open neighbourhood of X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Bangert, Sets with positive reach. Arch. Math. (Basel) 38, 54–57 (1982)

    Article  MathSciNet  Google Scholar 

  2. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  3. J.H.G. Fu, Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52, 1025–1046 (1985)

    Article  MathSciNet  Google Scholar 

  4. J.H.G. Fu, Curvature measures and generalized Morse theory. J. Differ. Geom. 30, 619–642 (1989)

    Article  MathSciNet  Google Scholar 

  5. J.H.G. Fu, Curvature measures for subanalytic sets. Am. J. Math. 116, 819–880 (1994)

    Article  MathSciNet  Google Scholar 

  6. D. Hug, G. Last, W. Weil, A local Steiner-type formula for general closed sets and applications. Math. Z. 246, 237–272 (2004)

    Article  MathSciNet  Google Scholar 

  7. N. Kleinjohann, Nächste Punkte in der Riemanschen Geometrie. Math. Z. 176, 327–344 (1981)

    Article  MathSciNet  Google Scholar 

  8. A. Lytchak, On the geometry of subsets of positive reach. Manuscripta Math. 115, 199–205 (2004)

    Article  MathSciNet  Google Scholar 

  9. A. Lytchak, Almost convex subsets. Geom. Dedicata 115, 201–218 (2005)

    Article  MathSciNet  Google Scholar 

  10. G. Matheron, Random Sets and Integral Geometry (Wiley, New York, 1975)

    MATH  Google Scholar 

  11. J. Rataj, L. Zajíček, On the structure of sets with positive reach. Math. Nachr. 290, 1806–1829 (2017)

    Article  MathSciNet  Google Scholar 

  12. R. Sulanke, P. Wintgen, Differentialgeometrie und Faserbündel (Birkhäuser Verlag, Basel/Stuttgart, 1972)

    Book  Google Scholar 

  13. H. Weyl, On the volume of tubes. Am. J. Math. 1939, 461–472 (1939)

    Article  MathSciNet  Google Scholar 

  14. M. Zähle, Curvature measures and random sets II. Probab. Th. Rel. Fields 71, 37–58 (1986)

    Article  MathSciNet  Google Scholar 

  15. M. Zähle, Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rataj, J., Zähle, M. (2019). Sets with Positive Reach. In: Curvature Measures of Singular Sets. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-18183-3_4

Download citation

Publish with us

Policies and ethics