Skip to main content

Graph-Theoretic Partitioning of RNAs and Classification of Pseudoknots

  • Conference paper
  • First Online:
Book cover Algorithms for Computational Biology (AlCoB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11488))

Included in the following conference series:

  • 520 Accesses

Abstract

Dual graphs have been applied to model RNA secondary structures with pseudoknots, or intertwined base pairs. In a previous work, a linear-time algorithm was introduced to partition dual graphs into maximal topological components called blocks and determine whether each block contains a pseudoknot or not. This characterization allowed us to efficiently isolate smaller RNA fragments and classify them as pseudoknotted or pseudoknot-free regions, while keeping these sub-structures intact. In this paper we extend the partitioning algorithm by classifying a pseudoknot as either recursive or non-recursive. A pseudoknot is recursive if it contains independent regions or fragments. Each of these regions can be also identified by the modified algorithm, continuing with our current research in the development of a library of building blocks for RNA design by fragment assembly. Partitioning and classification of RNAs using dual graphs provide a systematic way for study of RNA structure and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barends, S., Rudinger-Thirion, J., Florentz, C., Giegé, R., Pleij, C., Kraal, B.: tRNA-Like structure regulates translation of brome mosaic virus RNA. J. Virol. 78(8), 4003–4010 (2004)

    Article  Google Scholar 

  2. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theor. Comput. Sci. 320(1), 35–50 (2004)

    Article  MathSciNet  Google Scholar 

  3. Dirks, R.-M., Pierce, N.-A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13), 1664–1677 (2003)

    Article  Google Scholar 

  4. Edmonds, J., Karp, R.-M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  Google Scholar 

  5. Fera, D., et al.: RAG: RNA-As-Graphs web resource. BMC Bioinform. 5, 88 (2004)

    Article  Google Scholar 

  6. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(1956), 399–404 (1956)

    Article  MathSciNet  Google Scholar 

  7. Gan, H.-H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucleic Acids Res. 31(11), 2926–2943 (2003)

    Article  Google Scholar 

  8. Gan, H.-H., et al.: RAG: RNA-As-Graphs database-concepts, analysis, and features. Bioinformatics 20(8), 1285–1291 (2004)

    Article  Google Scholar 

  9. Han, B., Dost, B., Bafna, V., Zhang, S.: Structural alignment of pseudoknotted RNA. J. Comput. Biol. 15(5), 489–504 (2008)

    Article  MathSciNet  Google Scholar 

  10. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)

    Book  Google Scholar 

  11. Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Communi. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  12. Izzo, J.-A., Kim, N., Elmetwaly, S., Schlick, T.: RAG: an update to the RNA-As-Graphs resource. BMC Bioinform. 12, 219 (2011)

    Article  Google Scholar 

  13. Jain, S., Bayrak, C.-S., Petingi, L., Schlick, T.: Dual graph partitioning highlights a small group of pseudoknot-containing RNA submotifs. Genes 9(8), 371 (2018)

    Article  Google Scholar 

  14. Jain, S., Ramos, S.-B., Laederach, A., Schlick, T.: A pipeline for computational design of novel RNA-like topologies. NAR 46(14), 7040–7051 (2018)

    Article  Google Scholar 

  15. Jain, S., Saju, S., Petingi, L., Schlick, T.: An extended dual graph library and partitioning algorithm applicable to pseudoknotted RNA structures. Methods (2019). https://doi.org/10.1016/j.ymeth.2019.03.022. Accessed 1 Apr 2019

  16. Kim, N., Petingi, L., Schlick, T.: Network theory tools for RNA modeling. WSEAS Trans. Math. 12(9), 941–955 (2013)

    Google Scholar 

  17. Kravchenko, A.: Predicting RNA secondary structures including pseudoknots. University of Oxford internal report (2009)

    Google Scholar 

  18. Lai, D., Proctor, J.-R., Zhu, J.-Y., Meyer, I.-M.: R-CHIE: a web server and R package for visualizing RNA secondary structures. Nucleic Acids Res. 40(12), e95 (2012). e-RNA: https://www.e-rna.org/r-chie/rfam.cgi. Accessed 4 Jan 2019

  19. Petingi, L., Schlick, T.: Partitioning RNAs into pseudonotted and pseudoknot-free regions modeled as dual graphs. q-bio.QM, arXiv:1601.04259 (2016). http://arxiv.org/abs/1601.0425. Accessed 4 Oct 2018

  20. Petingi, L., Schlick, T.: Partitioning and classification of RNA secondary structures into pseudonotted and pseudoknot-free regions using a graph-theoretical approach. IAENG Int. J. Comput. Sci. 44(2), 241–246 (2017)

    Google Scholar 

  21. Petingi, L.: Dual graph partitioning code. https://github.com/Louis-Petingi/Partition-Algorithm-3. Accesed 3 Jan 2019

  22. Schlax, P.-J., Xavier, K.-A., Gluick, T.-C., Draper, D.-E.: Translational repression of the Escherichia coli alpha operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex. J. Biol. Chem. 276(42), 38494–38501 (2001)

    Article  Google Scholar 

  23. Wong, T.-K., Lam, T.-W., Sung, W.-K., Cheung, B.-W., Yiu, S.-M.: Structural alignment of RNA with complex pseudoknot structure. J. Comput. Biol. 18(1), 97–108 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank first the referees for improving the content of the paper. NIGMS support from award R35GM122562 to T. S. is gratefully acknowledged. The work of L. P. was supported by PSC-CUNY Award \(\#\) 61249-00-49 of the City University of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Petingi .

Editor information

Editors and Affiliations

Appendix

Appendix

Let (ab) represents an edge of a dual graph with end-vertices a and b.

We are next illustrating the output of the partitioning algorithm tested on the tRNA-like-structure dual graph (see Fig. 6).

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petingi, L., Schlick, T. (2019). Graph-Theoretic Partitioning of RNAs and Classification of Pseudoknots. In: Holmes, I., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2019. Lecture Notes in Computer Science(), vol 11488. Springer, Cham. https://doi.org/10.1007/978-3-030-18174-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18174-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18173-4

  • Online ISBN: 978-3-030-18174-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics