Skip to main content

The Heart in Childhood Hypertension

  • Chapter
  • First Online:
  • 532 Accesses

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

Chronic elevated blood pressure leads to structural and functional changes in the heart, also known as hypertensive heart disease. Increased left ventricular wall stress causes left ventricular hypertrophy seen in about one third of hypertensive children. Furthermore, abnormal left ventricular diastolic filling is also commonly seen in children and adolescents with primary hypertension. The renin-angiotensin-aldosterone system plays a major role in the pathophysiology of hypertensive heart disease.

Echocardiography is the method of choice to look for cardiac end-organ damage in all hypertensive children and adolescents at diagnosis and in selected patients during follow-up. However, it is challenging that we still lack standardization and a consensus definition for left ventricular indexing to body size and for left ventricular hypertrophy in these age groups.

Both left ventricular hypertrophy and abnormal left ventricular diastolic filling are associated with non-hemodynamic factors like obesity, insulin resistance, raised plasma glucose, and ethnicity. This emphasizes the importance of a holistic approach in the management of a hypertensive child or adolescent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lawes CM, Vander Hoorn S, Rodgers A. International society of H. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371(9623):1513–8.

    Article  PubMed  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  3. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, et al. Prognostic value of left ventricular mass and geometry in systemic hypertension with left ventricular hypertrophy. Am J Cardiol. 1996;78(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  4. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152(1):73–8.. 8 e1

    Article  PubMed  Google Scholar 

  5. Pruette CS, Fivush BA, Flynn JT, Brady TM. Effects of obesity and race on left ventricular geometry in hypertensive children. Pediatr Nephrol. 2013;28(10):2015–22.

    Article  PubMed  Google Scholar 

  6. Hanevold C, Waller J, Daniels S, Portman R, Sorof J, International Pediatric Hypertension A. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113(2):328–33.

    Article  PubMed  Google Scholar 

  7. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39(4):903–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sorof JM, Alexandrov AV, Cardwell G, Portman RJ. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111(1):61–6.

    Article  PubMed  Google Scholar 

  9. Brady TM, Fivush B, Parekh RS, Flynn JT. Racial differences among children with primary hypertension. Pediatrics. 2010;126(5):931–7.

    Article  PubMed  Google Scholar 

  10. Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97(19):1907–11.

    Article  CAS  PubMed  Google Scholar 

  11. Gupta-Malhotra M, Hashmi SS, Poffenbarger T, McNiece-Redwine K. Left ventricular hypertrophy phenotype in childhood-onset essential hypertension. J Clin Hypertens (Greenwich). 2016;18(5):449–55.

    Article  Google Scholar 

  12. Lee H, Kong YH, Kim KH, Huh J, Kang IS, Song J. Left ventricular hypertrophy and diastolic function in children and adolescents with essential hypertension. Clin Hypertens. 2015;21:21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daniels SD, Meyer RA, Loggie JM. Determinants of cardiac involvement in children and adolescents with essential hypertension. Circulation. 1990;82(4):1243–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–8.

    Article  CAS  PubMed  Google Scholar 

  15. Diamond JA, Phillips RA. Hypertensive heart disease. Hypertens Res. 2005;28(3):191–202.

    Article  CAS  PubMed  Google Scholar 

  16. Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998;280(5363):574–7.

    Article  CAS  PubMed  Google Scholar 

  17. Briet M, Barhoumi T, Mian MOR, Coelho SC, Ouerd S, Rautureau Y, et al. Aldosterone-induced vascular remodeling and endothelial dysfunction require functional angiotensin type 1a receptors. Hypertension. 2016;67(5):897–905.

    Article  CAS  PubMed  Google Scholar 

  18. Ohishi M, Rakugi H, Ogihara T. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;331(16):1097–8.

    Article  CAS  PubMed  Google Scholar 

  19. Brull D, Dhamrait S, Myerson S, Erdmann J, Woods D, World M, et al. Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet. 2001;358(9288):1155–6.

    Article  CAS  PubMed  Google Scholar 

  20. Devereux RB, de Simone G, Ganau A, Roman MJ. Left ventricular hypertrophy and geometric remodeling in hypertension: stimuli, functional consequences and prognostic implications. J Hypertens Suppl. 1994;12(10):S117–27.

    CAS  PubMed  Google Scholar 

  21. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Italian society of H. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26(6):343–9.

    Article  CAS  PubMed  Google Scholar 

  23. Krishnamoorthy A, Brown T, Ayers CR, Gupta S, Rame JE, Patel PC, et al. Progression from normal to reduced left ventricular ejection fraction in patients with concentric left ventricular hypertrophy after long-term follow-up. Am J Cardiol. 2011;108(7):997–1001.

    Article  PubMed  Google Scholar 

  24. Milani RV, Drazner MH, Lavie CJ, Morin DP, Ventura HO. Progression from concentric left ventricular hypertrophy and normal ejection fraction to left ventricular dysfunction. Am J Cardiol. 2011;108(7):992–6.

    Article  PubMed  Google Scholar 

  25. Cramariuc D, Gerdts E. Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther. 2016;14(8):915–26.

    Article  CAS  PubMed  Google Scholar 

  26. Chinali M, de Simone G, Roman MJ, Best LG, Lee ET, Russell M, et al. Cardiac markers of pre-clinical disease in adolescents with the metabolic syndrome: the strong heart study. J Am Coll Cardiol. 2008;52(11):932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991;14(12):1132–43.

    Article  CAS  PubMed  Google Scholar 

  28. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–55.

    Article  CAS  PubMed  Google Scholar 

  29. Leichman JG, Lavis VR, Aguilar D, Wilson CR, Taegtmeyer H. The metabolic syndrome and the heart--a considered opinion. Clin Res Cardiol. 2006;95(Suppl 1):i134–41.

    Article  PubMed  CAS  Google Scholar 

  30. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100(24):14211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  32. Meng L, Hou D, Zhao X, Hu Y, Liang Y, Liu J, et al. Cardiovascular target organ damage could have been detected in sustained pediatric hypertension. Blood Press. 2015;24(5):284–92.

    Article  PubMed  Google Scholar 

  33. Drukteinis JS, Roman MJ, Fabsitz RR, Lee ET, Best LG, Russell M, et al. Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: the strong heart study. Circulation. 2007;115(2):221–7.

    Article  PubMed  Google Scholar 

  34. Lehtonen AO, Puukka P, Varis J, Porthan K, Tikkanen JT, Nieminen MS, et al. Prevalence and prognosis of ECG abnormalities in normotensive and hypertensive individuals. J Hypertens. 2016;34(5):959–66.

    Article  CAS  PubMed  Google Scholar 

  35. Okin PM, Oikarinen L, Viitasalo M, Toivonen L, Kjeldsen SE, Nieminen MS, et al. Prognostic value of changes in the electrocardiographic strain pattern during antihypertensive treatment: the losartan intervention for end-point reduction in hypertension study (LIFE). Circulation. 2009;119(14):1883–91.

    Article  CAS  PubMed  Google Scholar 

  36. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292(19):2350–6.

    Article  CAS  PubMed  Google Scholar 

  37. Verma A, Solomon SD. Diastolic dysfunction as a link between hypertension and heart failure. Med Clin North Am. 2009;93(3):647–64.

    Article  CAS  PubMed  Google Scholar 

  38. Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction. J Am Coll Cardiol. 2014;63(5):407–16.

    Article  PubMed  Google Scholar 

  39. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116(6):1007–21.

    Article  CAS  PubMed  Google Scholar 

  40. Abhayaratna WP, Srikusalanukul W, Budge MM. Aortic stiffness for the detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse pressure. J Hypertens. 2008;26(4):758–64.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Kollias G, Argyris AA, Papaioannou TG, Tountas C, Konstantonis GD, et al. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29(7):442–8.

    Article  CAS  PubMed  Google Scholar 

  42. Vlasseros I, Katsi V, Vyssoulis G, Pylarinos I, Richter D, Gialernios T, et al. Aggravation of left ventricular diastolic dysfunction in hypertensives with coronary artery disease. Hypertens Res. 2013;36(10):885–8.

    Article  CAS  PubMed  Google Scholar 

  43. Janardhanan R, Desai AS, Solomon SD. Therapeutic approaches to diastolic dysfunction. Curr Hypertens Rep. 2009;11(4):283–91.

    Article  CAS  PubMed  Google Scholar 

  44. Escobar E. Hypertension and coronary heart disease. J Hum Hypertens. 2002;16(Suppl 1):S61–3.

    Article  PubMed  Google Scholar 

  45. Seccia TM, Caroccia B, Muiesan ML, Rossi GP. Atrial fibrillation and arterial hypertension: a common duet with dangerous consequences where the renin angiotensin-aldosterone system plays an important role. Int J Cardiol. 2016;206:71–6.

    Article  PubMed  Google Scholar 

  46. Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E. Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol. 2015;66(8):943–59.

    Article  PubMed  Google Scholar 

  47. Border WL, Kimball TR, Witt SA, Glascock BJ, Khoury P, Daniels SR. Diastolic filling abnormalities in children with essential hypertension. J Pediatr. 2007;150(5):503–9.

    Article  PubMed  Google Scholar 

  48. Pieruzzi F, Antolini L, Salerno FR, Giussani M, Brambilla P, Galbiati S, et al. The role of blood pressure, body weight and fat distribution on left ventricular mass, diastolic function and cardiac geometry in children. J Hypertens. 2015;33(6):1182–92.

    Article  CAS  PubMed  Google Scholar 

  49. Cuspidi C, Meani S, Fusi V, Valerio C, Catini E, Sala C, et al. Prevalence and correlates of left atrial enlargement in essential hypertension: role of ventricular geometry and the metabolic syndrome: the evaluation of target organ damage in hypertension study. J Hypertens. 2005;23(4):875–82.

    Article  CAS  PubMed  Google Scholar 

  50. Agu NC, McNiece Redwine K, Bell C, Garcia KM, Martin DS, Poffenbarger TS, et al. Detection of early diastolic alterations by tissue Doppler imaging in untreated childhood-onset essential hypertension. J Am Soc Hypertens. 2014;8(5):303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen MS, Xu FP, Wang YZ, Zhang GP, Yi Q, Zhang HQ, et al. Statins initiated after hypertrophy inhibit oxidative stress and prevent heart failure in rats with aortic stenosis. J Mol Cell Cardiol. 2004;37(4):889–96.

    Article  CAS  PubMed  Google Scholar 

  52. Schrier RW, Masoumi A, Elhassan E. Aldosterone: role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin J Am Soc Nephrol. 2010;5(6):1132–40.

    Article  CAS  PubMed  Google Scholar 

  53. Galderisi M, Capaldo B, Sidiropulos M, D’Errico A, Ferrara L, Turco A, et al. Determinants of reduction of coronary flow reserve in patients with type 2 diabetes mellitus or arterial hypertension without angiographically determined epicardial coronary stenosis. Am J Hypertens. 2007;20(12):1283–90.

    Article  PubMed  Google Scholar 

  54. Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, et al. Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(2)

    Google Scholar 

  55. Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine study. J Am Coll Cardiol. 1996;27(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  56. Hartiala O, Magnussen CG, Kajander S, Knuuti J, Ukkonen H, Saraste A, et al. Adolescence risk factors are predictive of coronary artery calcification at middle age: the cardiovascular risk in young Finns study. J Am Coll Cardiol. 2012;60(15):1364–70.

    Article  PubMed  Google Scholar 

  57. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3)

    Google Scholar 

  58. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920.

    Article  CAS  PubMed  Google Scholar 

  59. Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53(11):992–1002.

    Article  PubMed  Google Scholar 

  60. Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New normal limits for the paediatric electrocardiogram. Eur Heart J. 2001;22(8):702–11.

    Article  CAS  PubMed  Google Scholar 

  61. Killian L, Simpson JM, Savis A, Rawlins D, Sinha MD. Electrocardiography is a poor screening test to detect left ventricular hypertrophy in children. Arch Dis Child. 2010;95(10):832–6.

    Article  PubMed  Google Scholar 

  62. Bratincsak A, Williams M, Kimata C, Perry JC. The electrocardiogram is a poor diagnostic tool to detect left ventricular hypertrophy in children: a comparison with echocardiographic assessment of left ventricular mass. Congenit Heart Dis. 2015;10(4):E164–71.

    Article  PubMed  Google Scholar 

  63. Ramaswamy P, Patel E, Fahey M, Mahgerefteh J, Lytrivi ID, Kupferman JC. Electrocardiographic predictors of left ventricular hypertrophy in pediatric hypertension. J Pediatr. 2009;154(1):106–10.

    Article  PubMed  Google Scholar 

  64. Grossman A, Prokupetz A, Koren-Morag N, Grossman E, Shamiss A. Comparison of usefulness of Sokolow and Cornell criteria for left ventricular hypertrophy in subjects aged <20 years versus >30 years. Am J Cardiol. 2012;110(3):440–4.

    Article  PubMed  Google Scholar 

  65. Chavez E, Gonzalez E, Llanes Mdel C, Gari M, Garcia Y, Garcia J, et al. P-wave dispersion: a possible warning sign of hypertension in children. MEDICC Rev. 2014;16(1):31–6.

    PubMed  Google Scholar 

  66. Zhang X, Zeng W, Li Y, Hou D, Li X, Xu W. Evaluation of P wave dispersion and tissue Doppler imaging for predicting paroxysmal atrial fibrillation in patients with hypertension. Heart Surg Forum. 2018;21(1):E054–E8.

    Article  PubMed  Google Scholar 

  67. Boles U, Almuntaser I, Brown A, Murphy RR, Mahmud A, Feely J. Ventricular activation time as a marker for diastolic dysfunction in early hypertension. Am J Hypertens. 2010;23(7):781–5.

    Article  CAS  PubMed  Google Scholar 

  68. Sethna CB, Leisman DE. Left ventricular hypertrophy in children with hypertension: in search of a definition. Curr Hypertens Rep. 2016;18(8):65.

    Article  PubMed  Google Scholar 

  69. Foster BJ, Gao T, Mackie AS, Zemel BS, Ali H, Platt RW, et al. Limitations of expressing left ventricular mass relative to height and to body surface area in children. J Am Soc Echocardiogr. 2013;26(4):410–8.

    Article  PubMed  Google Scholar 

  70. Cantinotti M, Kutty S, Franchi E, Paterni M, Scalese M, Iervasi G, et al. Pediatric echocardiographic nomograms: what has been done and what still needs to be done. Trends Cardiovasc Med. 2017;27(5):336–49.

    Article  PubMed  Google Scholar 

  71. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22(6):709–14.

    Article  PubMed  Google Scholar 

  72. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    Article  PubMed  Google Scholar 

  73. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95. quiz 576-7

    Article  PubMed  Google Scholar 

  74. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25(5):1056–62.

    Article  PubMed  Google Scholar 

  75. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8.

    Article  CAS  PubMed  Google Scholar 

  76. Chinali M, Emma F, Esposito C, Rinelli G, Franceschini A, Doyon A, et al. Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr. 2016;170:193–8.

    Article  PubMed  Google Scholar 

  77. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the Framingham heart study. J Am Coll Cardiol. 1995;25(4):879–84.

    Article  CAS  PubMed  Google Scholar 

  78. Velagaleti RS, Gona P, Pencina MJ, Aragam J, Wang TJ, Levy D, et al. Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. Am J Cardiol. 2014;113(1):117–22.

    Article  PubMed  Google Scholar 

  79. Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas heart study. Circ Cardiovasc Imaging. 2010;3(2):164–71.

    Article  PubMed  Google Scholar 

  80. Bang CN, Gerdts E, Aurigemma GP, Boman K, Dahlof B, Roman MJ, et al. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients: the losartan intervention for endpoint reduction in hypertension study. J Hypertens. 2013;31(10):2060–8.

    Article  CAS  PubMed  Google Scholar 

  81. Giles TD. Assessment of global risk: a foundation for a new, better definition of hypertension. J Clin Hypertens (Greenwich). 2006;8(8 Suppl 2):5–14. quiz 39

    Article  Google Scholar 

  82. de Simone G, Mureddu GF, Greco R, Scalfi L, Del Puente AE, Franzese A, et al. Relations of left ventricular geometry and function to body composition in children with high casual blood pressure. Hypertension. 1997;30(3 Pt 1):377–82.

    Article  PubMed  Google Scholar 

  83. Richey PA, Disessa TG, Somes GW, Alpert BS, Jones DP. Left ventricular geometry in children and adolescents with primary hypertension. Am J Hypertens. 2010;23(1):24–9.

    Article  PubMed  Google Scholar 

  84. De Marco M, de Simone G, Roman MJ, Chinali M, Lee ET, Calhoun D, et al. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults: the strong heart study. Diabetes Care. 2011;34(10):2300–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gerdts E, Cramariuc D, de Simone G, Wachtell K, Dahlof B, Devereux RB. Impact of left ventricular geometry on prognosis in hypertensive patients with left ventricular hypertrophy (the LIFE study). Eur J Echocardiogr. 2008;9(6):809–15.

    Article  PubMed  Google Scholar 

  86. Bang CN, Gerdts E, Aurigemma GP, Boman K, de Simone G, Dahlof B, et al. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7(3):422–9.

    Article  PubMed  Google Scholar 

  87. Yan Y, Liu J, Wang L, Hou D, Zhao X, Cheng H, et al. Independent influences of excessive body weight and elevated blood pressure from childhood on left ventricular geometric remodeling in adulthood. Int J Cardiol. 2017;243:492–6.

    Article  PubMed  Google Scholar 

  88. Ganau A, Arru A, Saba PS, Piga G, Glorioso N, Tonolo G, et al. Stroke volume and left heart anatomy in relation to plasma volume in essential hypertension. J Hypertens Suppl. 1991;9(6):S150–1.

    Article  CAS  PubMed  Google Scholar 

  89. Gupta-Malhotra M, Hamzeh RK, Poffenbarger T, McNiece-Redwine K, Hashmi SS. Myocardial performance index in childhood onset essential hypertension and white coat hypertension. Am J Hypertens. 2016;29(3):379–87.

    PubMed  Google Scholar 

  90. Sharp AS, Tapp RJ, Thom SA, Francis DP, Hughes AD, Stanton AV, et al. Tissue Doppler E/E′ ratio is a powerful predictor of primary cardiac events in a hypertensive population: an ASCOT substudy. Eur Heart J. 2010;31(6):747–52.

    Article  PubMed  Google Scholar 

  91. Tiwari S, Schirmer H, Jacobsen BK, Hopstock LA, Nyrnes A, Heggelund G, et al. Association between diastolic dysfunction and future atrial fibrillation in the Tromso study from 1994 to 2010. Heart. 2015;101(16):1302–8.

    Article  CAS  PubMed  Google Scholar 

  92. Cantinotti M, Giordano R, Scalese M, Murzi B, Assanta N, Spadoni I, et al. Nomograms for mitral inflow Doppler and tissue Doppler velocities in Caucasian children. J Cardiol. 2016;68(4):288–99.

    Article  PubMed  Google Scholar 

  93. Dallaire F, Slorach C, Hui W, Sarkola T, Friedberg MK, Bradley TJ, et al. Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging. 2015;8(2):e002167.

    Article  PubMed  Google Scholar 

  94. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.

    Article  PubMed  Google Scholar 

  95. Pacileo G, Castaldi B, Di Salvo G, Limongelli G, Rea A, D’Andrea A, et al. Assessment of left-ventricular mass and remodeling in obese adolescents: M-mode, 2D or 3D echocardiography? J Cardiovasc Med (Hagerstown). 2013;14(2):144–9.

    Article  Google Scholar 

  96. Codella NC, Lee HY, Fieno DS, Chen DW, Hurtado-Rua S, Kochar M, et al. Improved left ventricular mass quantification with partial voxel interpolation: in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging. 2012;5(1):137–46.

    Article  PubMed  Google Scholar 

  97. Riehle TJ, Mahle WT, Parks WJ, Sallee D 3rd, Fyfe DA. Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21(1):78–83.

    Article  PubMed  Google Scholar 

  98. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46.

    Article  PubMed  Google Scholar 

  99. Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick T, Franke A, et al. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. J Am Coll Cardiol Img. 2008;1(4):413–23.

    Article  Google Scholar 

  100. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. J Am Coll Cardiol Img. 2012;5(3):239–51.

    Article  Google Scholar 

  101. Neeland IJ, Drazner MH, Berry JD, Ayers CR, deFilippi C, Seliger SL, et al. Biomarkers of chronic cardiac injury and hemodynamic stress identify a malignant phenotype of left ventricular hypertrophy in the general population. J Am Coll Cardiol. 2013;61(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  102. Seliger SL, de Lemos J, Neeland IJ, Christenson R, Gottdiener J, Drazner MH, et al. Older adults, “malignant” left ventricular hypertrophy, and associated cardiac-specific biomarker phenotypes to identify the differential risk of new-onset reduced versus preserved ejection fraction heart failure: CHS (cardiovascular health study). JACC Heart Fail. 2015;3(6):445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Diez J, Gonzalez A, Lopez B, Querejeta R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med. 2005;2(4):209–16.

    Article  CAS  PubMed  Google Scholar 

  104. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16(7):1031–41.

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Hamashima Y, Kawai C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J. 1986;55(6):575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation. 2004;110(25):3808–14.

    Article  PubMed  Google Scholar 

  107. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21(5):500–8.

    Article  PubMed  Google Scholar 

  108. Franz IW, Tonnesmann U, Muller JF. Time course of complete normalization of left ventricular hypertrophy during long-term antihypertensive therapy with angiotensin converting enzyme inhibitors. Am J Hypertens. 1998;11(6 Pt 1):631–9.

    Article  CAS  PubMed  Google Scholar 

  109. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115(1):41–6.

    Article  PubMed  Google Scholar 

  110. Diamond JA, Phillips RA. Regression of left ventricular hypertrophy: are there preferred drugs? Curr Hypertens Rep. 2003;5(5):368–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asle Hirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirth, A. (2019). The Heart in Childhood Hypertension. In: Lurbe, E., Wühl, E. (eds) Hypertension in Children and Adolescents. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-18167-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18167-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18166-6

  • Online ISBN: 978-3-030-18167-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics