Skip to main content
  • 244 Accesses

Abstract

We make our case that security and trust in the context of cyberphysical microfluidic biochips should be incorporated as a fundamental design consideration, right alongside cost, complexity, efficiency, and reliability. We also discuss the real-world interpretation of the impact that the countermeasures presented in this book may have and give several pointers for promising research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.V. Lasky, B.S. Fisher, S. Jacques, ‘Thinking thief’ in the crime prevention arms race: lessons learned from shoplifters. Secur. J. 30(3), 772–792 (2017)

    Article  Google Scholar 

  2. S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Microfluidic encryption of on-chip biochemical assays, in Proceedings of IEEE Biomedical Circuits and Systems Conference (Shanghai) (2016), pp. 152–155

    Google Scholar 

  3. S. Bhattacharjee, J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Locking of biochemical assays for digital microfluidic biochips, in Proceedings of IEEE European Test Symposium (Bremen) (2018), pp. 1–6

    Google Scholar 

  4. C.-W. Hsieh, Z. Li, T.-Y. Ho, Piracy prevention of digital microfluidic biochips, in Proceedings of Asia South Pacific Design Automation Conference (Chiba) (2017), pp. 512–517

    Google Scholar 

  5. S.S. Ali, M. Ibrahim, J. Rajendran, O. Sinanoglu, K. Chakrabarty, Supply-chain security of digital microfluidic biochips. Computer 49(8), 36–43 (2016)

    Article  Google Scholar 

  6. G. Wang, D. Teng, Y.-T. Lai, Y.-W. Lu, Y. Ho, C.-Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2013)

    Article  Google Scholar 

  7. K.Y.-T. Lai, Y.-T. Yang, C.-Y. Lee, An intelligent digital microfluidic processor for biomedical detection. J. Signal Process. Syst. 78(1), 85–93 (2015)

    Article  Google Scholar 

  8. Z. Li, K.Y.-T. Lai, P.-H. Yu, T.-Y. Ho, K. Chakrabarty, C.-Y. Lee, High-level synthesis for micro-electrode-dot-array digital microfluidic biochips, in Proceedings IEEE/ACM Design Automation Conference (2016), p. 146

    Google Scholar 

  9. O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Proceedings of Asia South Pacific Design Automation Conference (2017), pp. 708–713

    Google Scholar 

  10. Z. Li, K.Y.-T. Lai, P.-H. Yu, K. Chakrabarty, T.-Y. Ho, C.-Y. Lee, Built-in self-test for micro-electrode-dot-array digital microfluidic biochips, in Proceedings of IEEE International Test Conference (2016), pp. 1–10

    Google Scholar 

  11. Z. Li, K.Y.-T. Lai, P.-H. Yu, K. Chakrabarty, M. Pajic, T.-Y. Ho, C.-Y. Lee, Error recovery in a micro-electrode-dot-array digital microfluidic biochip? in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2016), p. 105

    Google Scholar 

  12. K. Rosenfeld, E. Gavas, R. Karri, Sensor physical unclonable functions, in Proceedings of International Symposium on Hardware Oriented Security and Trust (2010), pp. 112–117

    Google Scholar 

  13. U. Ruhrmair, J. Martinez-Hurtado, X. Xu, C. Kraeh, C. Hilgers, D. Kononchuk, J.J. Finley, W.P. Burleson, Virtual proofs of reality and their physical implementation, in Proceedings of IEEE Symposium on Security & Privacy (2015), pp. 70–85

    Google Scholar 

  14. J. Tang, R. Karri, J. Rajendran, Securing pressure measurements using SensorPUFs, in Proceedings of IEEE International Symposium on Circuits and Systems (Montreal) (2016)

    Google Scholar 

  15. C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

    Article  Google Scholar 

  16. Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 316, 817–830 (2012)

    Article  Google Scholar 

  17. D. Shahrjerdi, J. Rajendran, S. Garg, F. Koushanfar, R. Karri, Shielding and securing integrated circuits with sensors, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (IEEE Press, Piscataway, 2014), pp. 170–174

    Google Scholar 

  18. R.A. Coutu, S.A. Ostrow, Microelectromechanical systems (MEMS) resistive heaters as circuit protection devices. IEEE Trans. Compon. Packag. Manuf. Technol. 3(12), 2174–2179 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J., Ibrahim, M., Chakrabarty, K., Karri, R. (2020). Conclusions. In: Secure and Trustworthy Cyberphysical Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-18163-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18163-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18162-8

  • Online ISBN: 978-3-030-18163-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics