Skip to main content

Detection: Randomizing Checkpoints on Cyberphysical Digital Microfluidic Biochips

  • Chapter
  • First Online:
Secure and Trustworthy Cyberphysical Microfluidic Biochips
  • 283 Accesses

Abstract

Security mechanisms designed to prevent attacks in a cyberphysical microfluidic system are unlikely to be completely foolproof. A detection system can inform an end user that an attack has occurred so that corrective actions can be taken, preventing downstream errors and unnecessary waste. In this chapter, we propose leveraging error recovery hardware for security purposes through the randomization of checkpoints in both space and time, and provide design guidelines for designers of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)

    Article  Google Scholar 

  2. P.A. Williams, A.J. Woodward, Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem. Med. Devices Evid. Res. 8, 305 (2015)

    Article  Google Scholar 

  3. Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)

    Article  Google Scholar 

  4. V. Srinivasan, A digital microfluidic lab on a chip for clinical diagnostic applications. PhD thesis, Duke University, 2005

    Google Scholar 

  5. S. Kennedy, PCR Troubleshooting and Optimization: The Essential Guide (Horizon Scientific Press, Poole, 2011)

    Google Scholar 

  6. T.W.S. Journal, Theranos Results Could Throw off Medical Decisions, Study Finds (2016)

    Google Scholar 

  7. A. Barenghi, L. Breveglieri, I. Koren, D. Naccache, Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

    Article  Google Scholar 

  8. C.Y. Lee, An algorithm for path connections and its applications. IEEE Trans. Electron. EC-10(3), 346–365 (1961)

    Article  MathSciNet  Google Scholar 

  9. F. Hadlock, A shortest path algorithm for grid graphs. Networks 7(4), 323–334 (1977)

    Article  MathSciNet  Google Scholar 

  10. J. Hao, J.B. Orlin, A faster algorithm for finding the minimum cut in a graph, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, 1992), pp. 165–174

    MATH  Google Scholar 

  11. M. Stoer, F. Wagner, A simple min cut algorithm, in European Symposium on Algorithms (Springer, Berlin, 1994), pp. 141–147

    Google Scholar 

  12. D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC) (IEEE, Piscataway, 2012), pp. 177–182

    Google Scholar 

  13. D. Grissom, P. Brisk, A field-programmable pin-constrained digital microfluidic biochip, in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, Piscataway, 2013), p. 46

    Google Scholar 

  14. R. Higuchi, C. Fockler, G. Dollinger, R. Watson, Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030 (1993)

    Google Scholar 

  15. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, and V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab. Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  16. V. Pamula, V. Srinivasan, H. Chakrapani, R. Fair, E. Toone, A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives, in 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, Piscataway, 2005), pp. 722–725

    Google Scholar 

  17. S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Security assessment of cyberphysical digital microfluidic biochips. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 445–458 (2016)

    Article  Google Scholar 

  18. N. Anderson, Confirmed: US and Israel created Stuxnet, lost control of it (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J., Ibrahim, M., Chakrabarty, K., Karri, R. (2020). Detection: Randomizing Checkpoints on Cyberphysical Digital Microfluidic Biochips. In: Secure and Trustworthy Cyberphysical Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-18163-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18163-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18162-8

  • Online ISBN: 978-3-030-18163-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics