Advertisement

Prevention: Tamper-Resistant Pin-Constrained Digital Microfluidic Biochips

Chapter
  • 190 Downloads

Abstract

The well-worn maxim that an ounce of prevention is worth a pound of cure certainly applies to the design of secure systems; security breaches are difficult to contain due to the speed, scale, and low-cost of information dissemination on the internet. When security breaches result in physical damage, the lost assets may be difficult or impossible to replace, e.g., DNA samples from a crime scene. This chapter develops techniques for the prevention of actuation tampering attacks on a cyberphysical microfluidic biochip by leveraging the inherent loss of control freedom from pin-constrained digital microfluidic biochips.

Keywords

Digital microfluidics Electrode addressing Security Tamper resistance Indicator droplets ILP 

References

  1. 1.
    Y. Zhao, T. Xu, K. Chakrabarty, Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(7), 986–999 (2011)CrossRefGoogle Scholar
  2. 2.
    S.-T. Yu, S.-H. Yeh, T.-Y. Ho, Reliability-driven chip-level design for high-frequency digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(4), 529–539 (2015)CrossRefGoogle Scholar
  3. 3.
    T.-W. Huang, T.-Y. Ho, K. Chakrabarty, Reliability-oriented broadcast electrode-addressing for pin-constrained digital microfluidic biochips, in Proceedings IEEE/ACM International Conference Computer-Aided Design (2011), pp. 448–455Google Scholar
  4. 4.
    T.-W. Huang, H.-Y. Su, T.-Y. Ho, Progressive network-flow based power-aware broadcast addressing for pin-constrained digital microfluidic biochips, in Proceedings IEEE/ACM Design Automation Conference (2011), pp. 741–746Google Scholar
  5. 5.
    D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, P. Brisk, An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integr. VLSI J. 51, 169–193 (2015)CrossRefGoogle Scholar
  6. 6.
    T. A. Dinh, S. Yamashita, T.-Y. Ho, An optimal pin-count design with logic optimization for digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(4), 629–641 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Secure randomized checkpointing for digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37, 1119–1132 (2018)CrossRefGoogle Scholar
  9. 9.
    S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Security assessment of cyberphysical digital microfluidic biochips. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 445–458 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Ibrahim, K. Chakrabarty, K. Scott, Synthesis of cyberphysical digital-microfluidic biochips for real-time quantitative analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(5), 733–746 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, T. Xu, K. Chakrabarty, Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. ACM J. Emerg. Technol. Comput. Syst. 6(3), 11 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Chen, S. Potluri, F. Koushanfar, BioChipWork: reverse engineering of microfluidic biochips, in Proceedings IEEE International Conference Computer Design (Newton, MA) (2017) pp. 9–16Google Scholar
  14. 14.
    H. Yao, Q. Wang, Y. Shen, T.-Y. Ho, Y. Cai, Integrated functional and washing routing optimization for cross-contamination removal in digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(8), 1283–1296 (2016)CrossRefGoogle Scholar
  15. 15.
    S.E. Schaeffer, Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)CrossRefGoogle Scholar
  16. 16.
    T.F. Gonzalez, Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T.-W. Huang, T.-Y. Ho, A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips, in Proceedings IEEE International Conference Computer Design (2009), pp. 445–450.Google Scholar
  18. 18.
    Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(6), 817–830 (2012)CrossRefGoogle Scholar
  19. 19.
    J.K. Park, S.J. Lee, K.H. Kang, Fast and reliable droplet transport on single-plate electrowetting on dielectrics using nonfloating switching method. Biomicrofluidics 4(2), 024102 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Tang, M. Ibrahim, K. Chakrabarty, Randomized checkpoints: a practical defense for cyberphysical microfluidic systems. IEEE Des. Test 36(1), 5–13 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, The EM side-channel(s), in Proceedings International. Workshop Cryptographic Hardware Embedded System (Springer, Berlin, 2002), pp. 29–45.CrossRefGoogle Scholar
  22. 22.
    R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Mendelsohn, Secure boot snafu: Microsoft leaks backdoor key, firmware flung wide open (2016)Google Scholar
  24. 24.
    D. Goodin, In blunder threatening windows users, d-link publishes code-signing key (2015)Google Scholar
  25. 25.
    B. Schneier, Sony PlayStation 3 master key leaked (2012)Google Scholar
  26. 26.
    D.T. Grissom, J. McDaniel, P. Brisk, A low-cost field-programmable pin-constrained digital microfluidic biochip. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(11), 1657–1670 (2014)CrossRefGoogle Scholar
  27. 27.
    D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Grissom, C. Curtis, P. Brisk, Interpreting assays with control flow on digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 10(3), 24 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Wang, D. Teng, Y.-T. Lai, Y.-W. Lu, Y. Ho, C.-Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Wang, D. Teng, S.-K. Fan, Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnol. 5(4), 152–160 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.New York UniversityBrooklynUSA
  2. 2.Intel (United States)Santa ClaraUSA
  3. 3.Department of ECEDuke UniversityDurhamUSA

Personalised recommendations