Skip to main content
  • 320 Accesses

Abstract

Cyberphysical microfluidic biochip (CPMB) designers have enough difficulty simply getting their devices to function and scale. As such, security and trust has not been a major design consideration. However, missteps by related industries suggest that it would be shortsighted to ignore security and trust. This chapter argues for the importance of security and trust designed specifically for CPMBs. First, the factors contributing to the insecurity of CPMBs are discussed and analyzed. Then, a taxonomy of threat models and attack outcomes are described. Extensive example scenarios of microfluidic application areas are provided to vividly illustrate how security and trust issues are already prevalent. The chapter closes by making a strong case for hardware-based security and summarizes the concepts in several tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The New York Times, ‘You Are the Product’: Targeted by Cambridge Analytica on Facebook (The New York Times, New York, 2018)

    Google Scholar 

  2. The New York Times, 2.5 Million More People Potentially Exposed in Equifax Breach (The New York Times, New York, 2017)

    Google Scholar 

  3. G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, W. Xu, DolphinAttack: inaudible voice commands, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2017), pp. 103–117

    Google Scholar 

  4. S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE 102, 1229–1247 (2014)

    Article  Google Scholar 

  5. SEMI, IP Challenges for the Semiconductor Equipment and Materials Industry (2012)

    Google Scholar 

  6. S.S. Ali, M. Ibrahim, J. Rajendran, O. Sinanoglu, K. Chakrabarty, Supply-chain security of digital microfluidic biochips. Computer 49(8), 36–43 (2016)

    Article  Google Scholar 

  7. L.R. Volpatti, A.K. Yetisen, Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)

    Article  Google Scholar 

  8. F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), p. 1 (2008)

    Article  Google Scholar 

  9. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  10. D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, The EM side-channel(s), in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2002), pp. 29–45

    MATH  Google Scholar 

  11. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al., Comprehensive experimental analyses of automotive attack surfaces, in Proceedings of USENIX Security Symposium, San Francisco (2011), pp. 77–92

    Google Scholar 

  12. B. Schneier, Israeli Security Company Attacks AMD by Publishing Zero-Day Exploits (2018)

    Google Scholar 

  13. A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry, Challenges for securing cyber physical systems, in Proceedings of the Workshop on Future Directions in Cyber-physical Systems Security (2009), p. 5

    Google Scholar 

  14. R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)

    Article  Google Scholar 

  15. N. Ferguson, B. Schneier, T. Kohno, Cryptography Engineering: Design Principles and Practical Applications (Wiley, Hoboken, 2011)

    Google Scholar 

  16. T. Xu, K. Chakrabarty, Functional testing of digital microfluidic biochips, in 2007 IEEE International Test Conference (IEEE, Piscataway, 2007), pp. 1–10

    Google Scholar 

  17. R. Anderson, M. Kuhn, Tamper resistance—a cautionary note, in Proceedings of the Second USENIX Workshop on Electronic Commerce, vol. 2 (1996), pp. 1–11

    Google Scholar 

  18. J. Evans, Global Biochip Markets: Microarrays and Lab-on-a-Chip, Tech. Rep. BIO049F (BCC Research, Wellesley, 2016)

    Google Scholar 

  19. A. McWilliams, Microfluidics: Technologies and Global Markets, Tech. Rep. (BCC Research, Wellesley, 2013)

    Google Scholar 

  20. M. Rostami, F. Koushanfar, R. Karri, A primer on hardware security: models, methods, and metrics. Proc. IEEE 102(8), pp. 1283–1295 (2014)

    Article  Google Scholar 

  21. H. Chen, S. Potluri, F. Koushanfar, BioChipWork: reverse engineering of microfluidic biochips, in 2017 IEEE International Conference on Computer Design (ICCD) (IEEE, Piscataway, 2017), pp. 9–16

    Book  Google Scholar 

  22. M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab. Chip 2(2), pp. 96–101 (2002)

    Article  Google Scholar 

  23. S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Security assessment of cyberphysical digital microfluidic biochips. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 445–458 (2016)

    Article  Google Scholar 

  24. B. Vogelstein, K.W. Kinzler, Digital PCR. Proc. Natl. Acad. Sci. 96(16), 9236–9241 (1999)

    Article  Google Scholar 

  25. P. Sykes, S. Neoh, M. Brisco, E. Hughes, J. Condon, A. Morley, Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13(3), 444–449 (1992)

    Google Scholar 

  26. M. Baker, Digital PCR hits its stride. Nat. Methods 9(6), 541–544 (2012)

    Article  Google Scholar 

  27. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  28. S. Dube, J. Qin, R. Ramakrishnan, Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8), e2876 (2008)

    Article  Google Scholar 

  29. J.F. Huggett, S. Cowen, C.A. Foy, Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61(1), pp. 79–88 (2015)

    Article  Google Scholar 

  30. M. Zarrei, J.R. MacDonald, D. Merico, S.W. Scherer, A copy number variation map of the human genome. Nat. Rev. Genet. 16(3), 172 (2015)

    Article  Google Scholar 

  31. A.J. Lafrate, L. Feuk, M.N. Rivera, M.L. Listewnik, P.K. Donahoe, Y. Qi, S.W. Scherer, C. Lee, Detection of large-scale variation in the human genome. Nat. Genet. 36(9), 949 (2004)

    Google Scholar 

  32. J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Månér, H. Massa, M. Walker, M. Chi, N. Navin, R. Lucito, J. Healy, J. Hicks, K. Ye, A. Reiner, T.C. Gilliam, B. Trask, N. Patterson, A. Zetterberg, M. Wigler, Large-scale copy number polymorphism in the human genome. Science 305(5683), pp. 525–528 (2004)

    Article  Google Scholar 

  33. J.F. Huggett, C.A. Foy, V. Benes, K. Emslie, J.A. Garson, R. Haynes, J. Hellemans, M. Kubista, R.D. Mueller, T. Nolan, et al., The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59(6), 892–902 (2013)

    Article  Google Scholar 

  34. M. Zhang, A. Raghunathan, N.K. Jha, Trustworthiness of medical devices and body area networks. Proc. IEEE 102(8), 1174–1188 (2014)

    Article  Google Scholar 

  35. W.C. Blackman Jr., Basic Hazardous Waste Management (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  36. G. Chen, Y. Lin, J. Wang, Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3), 497–503 (2006)

    Article  Google Scholar 

  37. J.C. Jokerst, J.M. Emory, C.S. Henry, Advances in microfluidics for environmental analysis. Analyst 137(1), 24–34 (2012)

    Article  Google Scholar 

  38. S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Microfluidics for food, agriculture and biosystems industries. Lab. Chip 11(9), 1574–1586 (2011)

    Article  Google Scholar 

  39. J. Wang, Microchip devices for detecting terrorist weapons. Anal. Chim. Acta 507(1), 3–10 (2004)

    Article  Google Scholar 

  40. L.G.W. Christopher, L.T.J. Cieslak, J.A. Pavlin, E.M. Eitzen, Biological warfare: a historical perspective. JAMA 278(5), 412–417 (1997)

    Article  Google Scholar 

  41. The New York Times, Banned Nerve Agent Sarin Used in Syria Chemical Attack, Turkey Says (The New York Times, New York, 2017)

    Google Scholar 

  42. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and classifying hardware Trojans. Computer 43, 39–46 (2010)

    Article  Google Scholar 

  43. K.S. Elvira, X.C.I Solvas, R.C. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5(11), 905–915 (2013)

    Article  Google Scholar 

  44. J. Knight, Microfluidics: honey, I shrunk the lab. Nature 418(6897), 474–475 (2002)

    Article  Google Scholar 

  45. H.H. Caicedo, S.T. Brady, Microfluidics: the challenge is to bridge the gap instead of looking for a ‘killer app’. Trends Biotechnol. 34, 1–3 (2016)

    Article  Google Scholar 

  46. D. Goodyear, The stress test, The New Yorker (2016)

    Google Scholar 

  47. Z. Schlanger, Haruko Obokata, who claimed stem cell breakthrough, found guilty of scientific misconduct, Newsweek (2014)

    Google Scholar 

  48. H. Obokata, Y. Sasai, H. Niwa, M. Kadota, M. Andrabi, N. Takata, M. Tokoro, Y. Terashita, S. Yonemura, C.A. Vacanti, T. Wakayama, Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 505(7485), 676–680 (2014)

    Article  Google Scholar 

  49. H. Obokata, T. Wakayama, Y. Sasai, K. Kojima, M.P. Vacanti, H. Niwa, M. Yamato, C.A. Vacanti, Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505(7485), 641–647 (2014)

    Article  Google Scholar 

  50. R. Garver, C. Seife, FDA Let Drugs Approved on Fraudulent Research Stay on the Market (2013)

    Google Scholar 

  51. M. Yarborough, Taking steps to increase the trustworthiness of scientific research. FASEB J. 28(9), 3841–3846 (2014)

    Article  Google Scholar 

  52. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Abelson, A. Pollack, Walgreens Cuts Ties to Blood-Testing Company Theranos (2016)

    Google Scholar 

  54. The Wall Street Journal, Theranos Results Could Throw Off Medical Decisions, Study Finds (The Wall Street Journal, New York, 2016)

    Google Scholar 

  55. P. Trinder, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6(1), 24–27 (1969)

    Article  Google Scholar 

  56. V. Srinivasan, V.K. Pamula, R.B. Fair, Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507(1), 145–150 (2004)

    Article  Google Scholar 

  57. S. Ungerleider, Faust’s Gold: Inside the East German Doping Machine (Thomas Dunne Books, New York, 2001)

    Google Scholar 

  58. The New York Times Company, The Russian Doping Scandal (The New York Times Company, New York, 2016)

    Google Scholar 

  59. D.A. Berry, The science of doping. Nature 454, pp. 692–693 (2008)

    Article  Google Scholar 

  60. BBC, Athletes Air Issues Over Testing (2009)

    Google Scholar 

  61. B. Bruijns, A. van Asten, R. Tiggelaar, H. Gardeniers, Microfluidic devices for forensic DNA analysis: a review. Biosensors 6(3), 41 (2016)

    Article  Google Scholar 

  62. N.R. Council et al., Strengthening Forensic Science in the United States: A Path Forward (National Academies Press, Washington, 2009)

    Google Scholar 

  63. H. Edwards, C. Gotsonis, Strengthening forensic science in the United States: a path forward, in Statement Before the United State Senate Committee on the Judiciary (2009)

    Google Scholar 

  64. J.W. Bond, C. Hammond, The value of DNA material recovered from crime scenes. J. Forensic Sci. 53(4), 797–801 (2008)

    Article  Google Scholar 

  65. W.C. Thompson, Subjective interpretation, laboratory error and the value of forensic DNA evidence: three case studies. Genetica 96(1–2), 153–168 (1995)

    Article  Google Scholar 

  66. J.M. Bienvenue, N. Duncalf, D. Marchiarullo, J.P. Ferrance, J.P. Landers, Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis. J. Forensic Sci. 51(2), 266–273 (2006)

    Article  Google Scholar 

  67. C.-Y. Lee, G.-B. Lee, J.-L. Lin, F.-C. Huang, C.-S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J. Micromech. Microeng. 15(6), 1215 (2005)

    Article  Google Scholar 

  68. J.M. Bienvenue, L.A. Legendre, J.P. Ferrance, J.P. Landers, An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci. Int. Genet. 4(3), 178–186 (2010)

    Article  Google Scholar 

  69. L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, J.P. Landers, A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 78(5), 1444–1451 (2006)

    Article  Google Scholar 

  70. J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 72(13), 2995–3000 (2000)

    Article  Google Scholar 

  71. E.T. Lagally, P.C. Simpson, R.A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B 63(3), 138–146 (2000)

    Article  Google Scholar 

  72. B.S. Ferguson, S.F. Buchsbaum, J.S. Swensen, K. Hsieh, X. Lou, H.T. Soh, Integrated microfluidic electrochemical DNA sensor. Anal. Chem. 81(15), 6503–6508 (2009)

    Article  Google Scholar 

  73. R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)

    Article  Google Scholar 

  74. J.L. Sepulveda, D.S. Young, The ideal laboratory information system. Arch. Pathol. Lab. Med. 137(8), 1129–1140 (2013)

    Article  Google Scholar 

  75. M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, N.K. Jha, Systematic poisoning attacks on and defenses for machine learning in healthcare. IEEE J. Biomed. Health. Inf. 19(6), 1893–1905 (2015)

    Article  Google Scholar 

  76. M. Alistar, U. Gaudenz, OpenDrop: an integrated do-it-yourself platform for personal use of biochips. Bioengineering 4(2), 45 (2017)

    Google Scholar 

  77. R. Fobel, C. Fobel, A.R. Wheeler, DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102(19), 193513 (2013)

    Article  Google Scholar 

  78. C.D. Chin, V. Linder, S.K. Sia, Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12, 2118–2134 (2012)

    Article  Google Scholar 

  79. V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab. Chip 4(4), 310–315 (2004)

    Article  Google Scholar 

  80. J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Secure randomized checkpointing for digital microfluidic biochips. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 37, 1119–1132 (2018)

    Article  Google Scholar 

  81. J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Securing digital microfluidic biochips by randomizing checkpoints, in Proceedings of IEEE International Test Conference (ITC) (IEEE, Piscataway, 2016), pp. 1–8

    Google Scholar 

  82. R. Silva, S. Bhatia, D. Densmore, A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive. Lab. Chip 16(14), 2730–2741 (2016)

    Article  Google Scholar 

  83. J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Security trade-offs in microfluidic routing fabrics, in 2017 IEEE International Conference on Computer Design (ICCD) (IEEE, Piscataway, 2017), pp. 25–32

    Book  Google Scholar 

  84. K. Rosenfeld, E. Gavas, R. Karri, Sensor physical unclonable functions, in 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (IEEE, Piscataway, 2010), pp. 112–117

    Book  Google Scholar 

  85. D. Shahrjerdi, J. Rajendran, S. Garg, F. Koushanfar, R. Karri, Shielding and securing integrated circuits with sensors, in Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (IEEE Press, Piscataway, 2014), pp. 170–174

    Google Scholar 

  86. C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

    Article  Google Scholar 

  87. L. Wei, C. Song, Y. Liu, J. Zhang, F. Yuan, Q. Xu, BoardPUF: physical unclonable functions for printed circuit board authentication, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IEEE, Piscataway, 2015), pp. 152–158

    Google Scholar 

  88. D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC) (IEEE, Piscataway, 2012), pp. 177–182

    Google Scholar 

  89. D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, P. Brisk, An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integr. VLSI J. 51, 169–193 (2015)

    Article  Google Scholar 

  90. S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Microfluidic encryption of on-chip biochemical assays, in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, Piscataway, 2016), pp. 152–155

    Book  Google Scholar 

  91. M. Potkonjak, Synthesis of trustable ICs using untrusted CAD tools, in Proceedings of IEEE/ACM Design Automation Conference (IEEE, Piscataway, 2010), pp. 633–634

    Google Scholar 

  92. G. Wang, D. Teng, Y.-T. Lai, Y.-W. Lu, Y. Ho, C.-Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2013)

    Article  Google Scholar 

  93. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J., Ibrahim, M., Chakrabarty, K., Karri, R. (2020). Security and Trust. In: Secure and Trustworthy Cyberphysical Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-18163-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18163-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18162-8

  • Online ISBN: 978-3-030-18163-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics