Security and Trust



Cyberphysical microfluidic biochip (CPMB) designers have enough difficulty simply getting their devices to function and scale. As such, security and trust has not been a major design consideration. However, missteps by related industries suggest that it would be shortsighted to ignore security and trust. This chapter argues for the importance of security and trust designed specifically for CPMBs. First, the factors contributing to the insecurity of CPMBs are discussed and analyzed. Then, a taxonomy of threat models and attack outcomes are described. Extensive example scenarios of microfluidic application areas are provided to vividly illustrate how security and trust issues are already prevalent. The chapter closes by making a strong case for hardware-based security and summarizes the concepts in several tables.


Security Trust Cyberphysical systems Digital microfluidic biochips Flow-based microfluidic biochips Actuation tampering Attack surface Threat model 


  1. 1.
    The New York Times, ‘You Are the Product’: Targeted by Cambridge Analytica on Facebook (The New York Times, New York, 2018)Google Scholar
  2. 2.
    The New York Times, 2.5 Million More People Potentially Exposed in Equifax Breach (The New York Times, New York, 2017)Google Scholar
  3. 3.
    G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, W. Xu, DolphinAttack: inaudible voice commands, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2017), pp. 103–117Google Scholar
  4. 4.
    S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE 102, 1229–1247 (2014)CrossRefGoogle Scholar
  5. 5.
    SEMI, IP Challenges for the Semiconductor Equipment and Materials Industry (2012)Google Scholar
  6. 6.
    S.S. Ali, M. Ibrahim, J. Rajendran, O. Sinanoglu, K. Chakrabarty, Supply-chain security of digital microfluidic biochips. Computer 49(8), 36–43 (2016)CrossRefGoogle Scholar
  7. 7.
    L.R. Volpatti, A.K. Yetisen, Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), p. 1 (2008)CrossRefGoogle Scholar
  9. 9.
    T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)CrossRefGoogle Scholar
  10. 10.
    D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, The EM side-channel(s), in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2002), pp. 29–45zbMATHGoogle Scholar
  11. 11.
    S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al., Comprehensive experimental analyses of automotive attack surfaces, in Proceedings of USENIX Security Symposium, San Francisco (2011), pp. 77–92Google Scholar
  12. 12.
    B. Schneier, Israeli Security Company Attacks AMD by Publishing Zero-Day Exploits (2018)Google Scholar
  13. 13.
    A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry, Challenges for securing cyber physical systems, in Proceedings of the Workshop on Future Directions in Cyber-physical Systems Security (2009), p. 5Google Scholar
  14. 14.
    R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Ferguson, B. Schneier, T. Kohno, Cryptography Engineering: Design Principles and Practical Applications (Wiley, Hoboken, 2011)Google Scholar
  16. 16.
    T. Xu, K. Chakrabarty, Functional testing of digital microfluidic biochips, in 2007 IEEE International Test Conference (IEEE, Piscataway, 2007), pp. 1–10Google Scholar
  17. 17.
    R. Anderson, M. Kuhn, Tamper resistance—a cautionary note, in Proceedings of the Second USENIX Workshop on Electronic Commerce, vol. 2 (1996), pp. 1–11Google Scholar
  18. 18.
    J. Evans, Global Biochip Markets: Microarrays and Lab-on-a-Chip, Tech. Rep. BIO049F (BCC Research, Wellesley, 2016)Google Scholar
  19. 19.
    A. McWilliams, Microfluidics: Technologies and Global Markets, Tech. Rep. (BCC Research, Wellesley, 2013)Google Scholar
  20. 20.
    M. Rostami, F. Koushanfar, R. Karri, A primer on hardware security: models, methods, and metrics. Proc. IEEE 102(8), pp. 1283–1295 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Chen, S. Potluri, F. Koushanfar, BioChipWork: reverse engineering of microfluidic biochips, in 2017 IEEE International Conference on Computer Design (ICCD) (IEEE, Piscataway, 2017), pp. 9–16CrossRefGoogle Scholar
  22. 22.
    M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab. Chip 2(2), pp. 96–101 (2002)CrossRefGoogle Scholar
  23. 23.
    S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Security assessment of cyberphysical digital microfluidic biochips. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 445–458 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Vogelstein, K.W. Kinzler, Digital PCR. Proc. Natl. Acad. Sci. 96(16), 9236–9241 (1999)CrossRefGoogle Scholar
  25. 25.
    P. Sykes, S. Neoh, M. Brisco, E. Hughes, J. Condon, A. Morley, Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13(3), 444–449 (1992)Google Scholar
  26. 26.
    M. Baker, Digital PCR hits its stride. Nat. Methods 9(6), 541–544 (2012)CrossRefGoogle Scholar
  27. 27.
    M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Dube, J. Qin, R. Ramakrishnan, Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8), e2876 (2008)CrossRefGoogle Scholar
  29. 29.
    J.F. Huggett, S. Cowen, C.A. Foy, Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61(1), pp. 79–88 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Zarrei, J.R. MacDonald, D. Merico, S.W. Scherer, A copy number variation map of the human genome. Nat. Rev. Genet. 16(3), 172 (2015)CrossRefGoogle Scholar
  31. 31.
    A.J. Lafrate, L. Feuk, M.N. Rivera, M.L. Listewnik, P.K. Donahoe, Y. Qi, S.W. Scherer, C. Lee, Detection of large-scale variation in the human genome. Nat. Genet. 36(9), 949 (2004)Google Scholar
  32. 32.
    J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Månér, H. Massa, M. Walker, M. Chi, N. Navin, R. Lucito, J. Healy, J. Hicks, K. Ye, A. Reiner, T.C. Gilliam, B. Trask, N. Patterson, A. Zetterberg, M. Wigler, Large-scale copy number polymorphism in the human genome. Science 305(5683), pp. 525–528 (2004)CrossRefGoogle Scholar
  33. 33.
    J.F. Huggett, C.A. Foy, V. Benes, K. Emslie, J.A. Garson, R. Haynes, J. Hellemans, M. Kubista, R.D. Mueller, T. Nolan, et al., The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59(6), 892–902 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Zhang, A. Raghunathan, N.K. Jha, Trustworthiness of medical devices and body area networks. Proc. IEEE 102(8), 1174–1188 (2014)CrossRefGoogle Scholar
  35. 35.
    W.C. Blackman Jr., Basic Hazardous Waste Management (CRC Press, Boca Raton, 2016)CrossRefGoogle Scholar
  36. 36.
    G. Chen, Y. Lin, J. Wang, Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3), 497–503 (2006)CrossRefGoogle Scholar
  37. 37.
    J.C. Jokerst, J.M. Emory, C.S. Henry, Advances in microfluidics for environmental analysis. Analyst 137(1), 24–34 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Microfluidics for food, agriculture and biosystems industries. Lab. Chip 11(9), 1574–1586 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Wang, Microchip devices for detecting terrorist weapons. Anal. Chim. Acta 507(1), 3–10 (2004)CrossRefGoogle Scholar
  40. 40.
    L.G.W. Christopher, L.T.J. Cieslak, J.A. Pavlin, E.M. Eitzen, Biological warfare: a historical perspective. JAMA 278(5), 412–417 (1997)CrossRefGoogle Scholar
  41. 41.
    The New York Times, Banned Nerve Agent Sarin Used in Syria Chemical Attack, Turkey Says (The New York Times, New York, 2017)Google Scholar
  42. 42.
    R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and classifying hardware Trojans. Computer 43, 39–46 (2010)CrossRefGoogle Scholar
  43. 43.
    K.S. Elvira, X.C.I Solvas, R.C. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5(11), 905–915 (2013)CrossRefGoogle Scholar
  44. 44.
    J. Knight, Microfluidics: honey, I shrunk the lab. Nature 418(6897), 474–475 (2002)CrossRefGoogle Scholar
  45. 45.
    H.H. Caicedo, S.T. Brady, Microfluidics: the challenge is to bridge the gap instead of looking for a ‘killer app’. Trends Biotechnol. 34, 1–3 (2016)CrossRefGoogle Scholar
  46. 46.
    D. Goodyear, The stress test, The New Yorker (2016)Google Scholar
  47. 47.
    Z. Schlanger, Haruko Obokata, who claimed stem cell breakthrough, found guilty of scientific misconduct, Newsweek (2014)Google Scholar
  48. 48.
    H. Obokata, Y. Sasai, H. Niwa, M. Kadota, M. Andrabi, N. Takata, M. Tokoro, Y. Terashita, S. Yonemura, C.A. Vacanti, T. Wakayama, Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 505(7485), 676–680 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Obokata, T. Wakayama, Y. Sasai, K. Kojima, M.P. Vacanti, H. Niwa, M. Yamato, C.A. Vacanti, Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505(7485), 641–647 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Garver, C. Seife, FDA Let Drugs Approved on Fraudulent Research Stay on the Market (2013)Google Scholar
  51. 51.
    M. Yarborough, Taking steps to increase the trustworthiness of scientific research. FASEB J. 28(9), 3841–3846 (2014)CrossRefGoogle Scholar
  52. 52.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    R. Abelson, A. Pollack, Walgreens Cuts Ties to Blood-Testing Company Theranos (2016)Google Scholar
  54. 54.
    The Wall Street Journal, Theranos Results Could Throw Off Medical Decisions, Study Finds (The Wall Street Journal, New York, 2016)Google Scholar
  55. 55.
    P. Trinder, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6(1), 24–27 (1969)CrossRefGoogle Scholar
  56. 56.
    V. Srinivasan, V.K. Pamula, R.B. Fair, Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507(1), 145–150 (2004)CrossRefGoogle Scholar
  57. 57.
    S. Ungerleider, Faust’s Gold: Inside the East German Doping Machine (Thomas Dunne Books, New York, 2001)Google Scholar
  58. 58.
    The New York Times Company, The Russian Doping Scandal (The New York Times Company, New York, 2016)Google Scholar
  59. 59.
    D.A. Berry, The science of doping. Nature 454, pp. 692–693 (2008)CrossRefGoogle Scholar
  60. 60.
    BBC, Athletes Air Issues Over Testing (2009)Google Scholar
  61. 61.
    B. Bruijns, A. van Asten, R. Tiggelaar, H. Gardeniers, Microfluidic devices for forensic DNA analysis: a review. Biosensors 6(3), 41 (2016)CrossRefGoogle Scholar
  62. 62.
    N.R. Council et al., Strengthening Forensic Science in the United States: A Path Forward (National Academies Press, Washington, 2009)Google Scholar
  63. 63.
    H. Edwards, C. Gotsonis, Strengthening forensic science in the United States: a path forward, in Statement Before the United State Senate Committee on the Judiciary (2009)Google Scholar
  64. 64.
    J.W. Bond, C. Hammond, The value of DNA material recovered from crime scenes. J. Forensic Sci. 53(4), 797–801 (2008)CrossRefGoogle Scholar
  65. 65.
    W.C. Thompson, Subjective interpretation, laboratory error and the value of forensic DNA evidence: three case studies. Genetica 96(1–2), 153–168 (1995)CrossRefGoogle Scholar
  66. 66.
    J.M. Bienvenue, N. Duncalf, D. Marchiarullo, J.P. Ferrance, J.P. Landers, Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis. J. Forensic Sci. 51(2), 266–273 (2006)CrossRefGoogle Scholar
  67. 67.
    C.-Y. Lee, G.-B. Lee, J.-L. Lin, F.-C. Huang, C.-S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J. Micromech. Microeng. 15(6), 1215 (2005)CrossRefGoogle Scholar
  68. 68.
    J.M. Bienvenue, L.A. Legendre, J.P. Ferrance, J.P. Landers, An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci. Int. Genet. 4(3), 178–186 (2010)CrossRefGoogle Scholar
  69. 69.
    L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, J.P. Landers, A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 78(5), 1444–1451 (2006)CrossRefGoogle Scholar
  70. 70.
    J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 72(13), 2995–3000 (2000)CrossRefGoogle Scholar
  71. 71.
    E.T. Lagally, P.C. Simpson, R.A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B 63(3), 138–146 (2000)CrossRefGoogle Scholar
  72. 72.
    B.S. Ferguson, S.F. Buchsbaum, J.S. Swensen, K. Hsieh, X. Lou, H.T. Soh, Integrated microfluidic electrochemical DNA sensor. Anal. Chem. 81(15), 6503–6508 (2009)CrossRefGoogle Scholar
  73. 73.
    R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)CrossRefGoogle Scholar
  74. 74.
    J.L. Sepulveda, D.S. Young, The ideal laboratory information system. Arch. Pathol. Lab. Med. 137(8), 1129–1140 (2013)CrossRefGoogle Scholar
  75. 75.
    M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, N.K. Jha, Systematic poisoning attacks on and defenses for machine learning in healthcare. IEEE J. Biomed. Health. Inf. 19(6), 1893–1905 (2015)CrossRefGoogle Scholar
  76. 76.
    M. Alistar, U. Gaudenz, OpenDrop: an integrated do-it-yourself platform for personal use of biochips. Bioengineering 4(2), 45 (2017)Google Scholar
  77. 77.
    R. Fobel, C. Fobel, A.R. Wheeler, DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102(19), 193513 (2013)CrossRefGoogle Scholar
  78. 78.
    C.D. Chin, V. Linder, S.K. Sia, Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12, 2118–2134 (2012)CrossRefGoogle Scholar
  79. 79.
    V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab. Chip 4(4), 310–315 (2004)CrossRefGoogle Scholar
  80. 80.
    J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Secure randomized checkpointing for digital microfluidic biochips. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 37, 1119–1132 (2018)CrossRefGoogle Scholar
  81. 81.
    J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Securing digital microfluidic biochips by randomizing checkpoints, in Proceedings of IEEE International Test Conference (ITC) (IEEE, Piscataway, 2016), pp. 1–8Google Scholar
  82. 82.
    R. Silva, S. Bhatia, D. Densmore, A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive. Lab. Chip 16(14), 2730–2741 (2016)CrossRefGoogle Scholar
  83. 83.
    J. Tang, M. Ibrahim, K. Chakrabarty, R. Karri, Security trade-offs in microfluidic routing fabrics, in 2017 IEEE International Conference on Computer Design (ICCD) (IEEE, Piscataway, 2017), pp. 25–32CrossRefGoogle Scholar
  84. 84.
    K. Rosenfeld, E. Gavas, R. Karri, Sensor physical unclonable functions, in 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (IEEE, Piscataway, 2010), pp. 112–117CrossRefGoogle Scholar
  85. 85.
    D. Shahrjerdi, J. Rajendran, S. Garg, F. Koushanfar, R. Karri, Shielding and securing integrated circuits with sensors, in Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (IEEE Press, Piscataway, 2014), pp. 170–174Google Scholar
  86. 86.
    C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)CrossRefGoogle Scholar
  87. 87.
    L. Wei, C. Song, Y. Liu, J. Zhang, F. Yuan, Q. Xu, BoardPUF: physical unclonable functions for printed circuit board authentication, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IEEE, Piscataway, 2015), pp. 152–158Google Scholar
  88. 88.
    D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC) (IEEE, Piscataway, 2012), pp. 177–182Google Scholar
  89. 89.
    D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, P. Brisk, An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integr. VLSI J. 51, 169–193 (2015)CrossRefGoogle Scholar
  90. 90.
    S.S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, R. Karri, Microfluidic encryption of on-chip biochemical assays, in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, Piscataway, 2016), pp. 152–155CrossRefGoogle Scholar
  91. 91.
    M. Potkonjak, Synthesis of trustable ICs using untrusted CAD tools, in Proceedings of IEEE/ACM Design Automation Conference (IEEE, Piscataway, 2010), pp. 633–634Google Scholar
  92. 92.
    G. Wang, D. Teng, Y.-T. Lai, Y.-W. Lu, Y. Ho, C.-Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2013)CrossRefGoogle Scholar
  93. 93.
    H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.New York UniversityBrooklynUSA
  2. 2.Intel (United States)Santa ClaraUSA
  3. 3.Department of ECEDuke UniversityDurhamUSA

Personalised recommendations