Advertisement

Cyberphysical Microfluidic Biochips

Chapter
  • 222 Downloads

Abstract

Cyberphysical microfluidic biochips comprise a broad set of technologies for the manipulation of fluids. This chapter provides a general review of microfluidic technologies with an emphasis on digital and flow-based microfluidic biochips, as they have shown great promise for commercialization and integration with security technologies. We discuss basic principles, fabrication, and advances in design automation.

Keywords

Cyberphysical systems Digital microfluidic biochips Flow-based microfluidic biochips Microvalves Routing fabric 

References

  1. 1.
    S. Pennathur, C. Meinhart, H. Soh, How to exploit the features of microfluidics technology. Lab Chip 8(1), 20–22 (2008)CrossRefGoogle Scholar
  2. 2.
    C.M. Klapperich, Microfluidic diagnostics: time for industry standards. Expert Rev. Med. Devices 6(3), 211–213 (2014)CrossRefGoogle Scholar
  3. 3.
    T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)CrossRefGoogle Scholar
  4. 4.
    G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Xia, J. Si, Z. Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens. Bioelectron. 77, 774–789 (2016)CrossRefGoogle Scholar
  6. 6.
    S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)CrossRefGoogle Scholar
  7. 7.
    B. Hadimioglu, R. Stearns, R. Ellson, Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J. Lab. Autom. 21(1), 4–18 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Boyd-Moss, S. Baratchi, M. Di Venere, K. Khoshmanesh, Self-contained microfluidic systems: a review. Lab Chip 16(17), 3177–3192 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Grissom, C. Curtis, P. Brisk, Interpreting assays with control flow on digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 10(3), 24 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Alistar, P. Pop, J. Madsen, Synthesis of application-specific fault-tolerant digital microfluidic biochip architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(5), 764–777 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Su, K. Chakrabarty, Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11(3), 682–710 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Pop, M. Alistar, E. Stuart, J. Madsen, Design methodology for digital microfluidic biochips, in Fault-Tolerant Digital Microfluidic Biochips: Compilation and Synthesis (Springer, Cham, 2016), pp. 13–28CrossRefGoogle Scholar
  15. 15.
    T. Xu, K. Chakrabarty, Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 1(2), 148–158 (2007)CrossRefGoogle Scholar
  16. 16.
    T.A. Dinh, S. Yamashita, T.-Y. Ho, K. Chakrabarty, A general testing method for digital microfluidic biochips under physical constraints, in Proceedings of IEEE International Test Conference, 2015, pp. 1–8Google Scholar
  17. 17.
    C.C.-Y. Lin, Y.-W. Chang, ILP-based pin-count aware design methodology for microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1315–1327 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Bhattacharjee, A. Banerjee, B.B. Bhattacharya, Sample preparation with multiple dilutions on digital microfluidic biochips. IET Comput. Digit. Tech. 8(1), 49–58 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Bhattacharjee, S. Poddar, S. Roy, J.-D. Huang, B.B. Bhattacharya, Dilution and mixing algorithms for flow-based microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 614–627 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, Low-cost dilution engine for sample preparation in digital microfluidic biochips, in Proceedings of the International Symposium on Electronic System Design, 2012, pp. 203–207Google Scholar
  23. 23.
    V. Ananthanarayanan, W. Thies, Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4(1), 1 (2010)CrossRefGoogle Scholar
  24. 24.
    G. Chen, Y. Lin, J. Wang, Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3), 497–503 (2006)CrossRefGoogle Scholar
  25. 25.
    J.C. Jokerst, J.M. Emory, C.S. Henry, Advances in microfluidics for environmental analysis. Analyst 137(1), 24–34 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Microfluidics for food, agriculture and biosystems industries. Lab Chip 11(9), 1574–1586 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Wang, Microchip devices for detecting terrorist weapons. Anal. Chim. Acta 507(1), 3–10 (2004)CrossRefGoogle Scholar
  28. 28.
    K. Choi, A.H. Ng, R. Fobel, A.R. Wheeler, Digital microfluidics. Annu. Rev. Anal. Chem. 5(1), 413–440 (2012)CrossRefGoogle Scholar
  29. 29.
    R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRefGoogle Scholar
  31. 31.
    H.-H. Shen, S.-K. Fan, C.-J. Kim, D.-J. Yao, EWOD microfluidic systems for biomedical applications. Microfluid. Nanofluid. 16(5), 965–987 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Bazargan, R. Kastner, M. Sarrafzadeh, et al., Fast template placement for reconfigurable computing systems. IEEE Des. Test Comput. 17(1), 68–83 (2000)CrossRefGoogle Scholar
  33. 33.
    D. Grissom, P. Brisk, Fast online synthesis of generally programmable digital microfluidic biochips, in Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, 2012, pp. 413–422Google Scholar
  34. 34.
    D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Soukup, Fast maze router, in Proceedings of the IEEE/ACM Design Automation Conference, 1978, pp. 100–102Google Scholar
  36. 36.
    T.-W. Huang, T.-Y. Ho, A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips, in Proceedings of the IEEE International Conference on Computer Design, 2009, pp. 445–450Google Scholar
  37. 37.
    K. Chakrabarty, Design automation and test solutions for digital microfluidic biochips. IEEE Trans. Circuits Syst. I 57(1), 4–17 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Xu, K. Chakrabarty, Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 4(3), 11 (2008)CrossRefGoogle Scholar
  39. 39.
    P.-H. Yuh, C.-L. Yang, Y.-W. Chang, Bioroute: a network-flow-based routing algorithm for the synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(11), 1928–1941 (2008)CrossRefGoogle Scholar
  40. 40.
    T. Xu, K. Chakrabarty, Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)CrossRefGoogle Scholar
  41. 41.
    Y.-J. Shin, et al., Machine vision for digital microfluidics. Rev. Sci. Instrum. 81(1), 014302 (2010)CrossRefGoogle Scholar
  42. 42.
    C.-L. Sotiropoulou, L. Voudouris, C. Gentsos, A.M. Demiris, N. Vassiliadis, S. Nikolaidis, Real-time machine vision FPGA implementation for microfluidic monitoring on lab-on-chips. IEEE Trans. Biomed. Circuits Syst. 8(2), 268–277 (2014)CrossRefGoogle Scholar
  43. 43.
    D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)CrossRefGoogle Scholar
  44. 44.
    G.-R. Lu, G.-M. Huang, A. Banerjee, B.B. Bhattacharya, T.-Y. Ho, H.-M. Chen, On reliability hardening in cyber-physical digital-microfluidic biochips, in Proceedings of the Asia and South Pacific Design Automation Conference, 2017, pp. 518–523Google Scholar
  45. 45.
    D.T. Grissom, J. McDaniel, P. Brisk, A low-cost field-programmable pin-constrained digital microfluidic biochip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(11), 1657–1670 (2014)CrossRefGoogle Scholar
  46. 46.
    R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRefGoogle Scholar
  47. 47.
    Y. Luo, K. Chakrabarty, Design of pin-constrained general-purpose digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(9), 1307–1320 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Grissom, P. Brisk, A field-programmable pin-constrained digital microfluidic biochip, in Proceedings of the IEEE/ACM Design Automation Conference, 2013, p. 46Google Scholar
  49. 49.
    Illumina, Illumina neoprep library prep system 2016. http://www.illumina.com/systems/neoprep-library-system.html/
  50. 50.
    Baebies, Inc., Baebies SEEKER 2017. http://baebies.com/products/seeker/
  51. 51.
    J. Karow, Oxford nanopore provides update on tech developments at London user meeting 2017. http://www.illumina.com/systems/neoprep-library-system/performance-specifications.html
  52. 52.
    R. Trojok, A. Volpato, M. Alistar, J. Schubert, Auryn: adaptor for general-purpose digital microfluidic biochips, July 2016Google Scholar
  53. 53.
    R. Fobel, C. Fobel, A.R. Wheeler, Dropbot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102(19), 193513 (2013)CrossRefGoogle Scholar
  54. 54.
    D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, P. Brisk, An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integr. VLSI J. 51, 169–193 (2015)CrossRefGoogle Scholar
  55. 55.
    D. Mark, S. Haeberle, G. Roth, F. Von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, in Microfluidics Based Microsystems (Springer, Dordrecht, 2010), pp. 305–376Google Scholar
  56. 56.
    M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)CrossRefGoogle Scholar
  57. 57.
    J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRefGoogle Scholar
  58. 58.
    T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)CrossRefGoogle Scholar
  59. 59.
    E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)CrossRefGoogle Scholar
  60. 60.
    L.M. Fidalgo, S.J. Maerkl, A software-programmable microfluidic device for automated biology. Lab Chip 11(9), 1612–1619 (2011)CrossRefGoogle Scholar
  61. 61.
    S. Dube, J. Qin, R. Ramakrishnan, Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8), e2876 (2008)CrossRefGoogle Scholar
  62. 62.
    K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(1), 55–68 (2017)CrossRefGoogle Scholar
  63. 63.
    R. Silva, S. Bhatia, D. Densmore, A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive. Lab Chip 16(14), 2730–2741 (2016)CrossRefGoogle Scholar
  64. 64.
    M. Ibrahim, K. Chakrabarty, U. Schlichtmann, CoSyn: efficient single-cell analysis using a hybrid microfluidic platform, in Proceedings of the Conference on Design, Automation and Test in Europe, Lausanne, March 2017Google Scholar
  65. 65.
    L.R. Volpatti, A.K. Yetisen, Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.New York UniversityBrooklynUSA
  2. 2.Intel (United States)Santa ClaraUSA
  3. 3.Department of ECEDuke UniversityDurhamUSA

Personalised recommendations