Skip to main content

Cyberphysical Microfluidic Biochips

  • Chapter
  • First Online:
Secure and Trustworthy Cyberphysical Microfluidic Biochips

Abstract

Cyberphysical microfluidic biochips comprise a broad set of technologies for the manipulation of fluids. This chapter provides a general review of microfluidic technologies with an emphasis on digital and flow-based microfluidic biochips, as they have shown great promise for commercialization and integration with security technologies. We discuss basic principles, fabrication, and advances in design automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Pennathur, C. Meinhart, H. Soh, How to exploit the features of microfluidics technology. Lab Chip 8(1), 20–22 (2008)

    Article  Google Scholar 

  2. C.M. Klapperich, Microfluidic diagnostics: time for industry standards. Expert Rev. Med. Devices 6(3), 211–213 (2014)

    Article  Google Scholar 

  3. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  4. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  5. Y. Xia, J. Si, Z. Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens. Bioelectron. 77, 774–789 (2016)

    Article  Google Scholar 

  6. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  7. B. Hadimioglu, R. Stearns, R. Ellson, Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J. Lab. Autom. 21(1), 4–18 (2016)

    Article  Google Scholar 

  8. M. Boyd-Moss, S. Baratchi, M. Di Venere, K. Khoshmanesh, Self-contained microfluidic systems: a review. Lab Chip 16(17), 3177–3192 (2016)

    Article  Google Scholar 

  9. D. Grissom, C. Curtis, P. Brisk, Interpreting assays with control flow on digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 10(3), 24 (2014)

    Article  Google Scholar 

  10. Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)

    Article  Google Scholar 

  11. F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)

    Article  Google Scholar 

  12. M. Alistar, P. Pop, J. Madsen, Synthesis of application-specific fault-tolerant digital microfluidic biochip architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(5), 764–777 (2016)

    Article  Google Scholar 

  13. F. Su, K. Chakrabarty, Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11(3), 682–710 (2006)

    Article  Google Scholar 

  14. P. Pop, M. Alistar, E. Stuart, J. Madsen, Design methodology for digital microfluidic biochips, in Fault-Tolerant Digital Microfluidic Biochips: Compilation and Synthesis (Springer, Cham, 2016), pp. 13–28

    Book  Google Scholar 

  15. T. Xu, K. Chakrabarty, Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 1(2), 148–158 (2007)

    Article  Google Scholar 

  16. T.A. Dinh, S. Yamashita, T.-Y. Ho, K. Chakrabarty, A general testing method for digital microfluidic biochips under physical constraints, in Proceedings of IEEE International Test Conference, 2015, pp. 1–8

    Google Scholar 

  17. C.C.-Y. Lin, Y.-W. Chang, ILP-based pin-count aware design methodology for microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1315–1327 (2010)

    Article  Google Scholar 

  18. K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)

    Article  Google Scholar 

  19. S. Bhattacharjee, A. Banerjee, B.B. Bhattacharya, Sample preparation with multiple dilutions on digital microfluidic biochips. IET Comput. Digit. Tech. 8(1), 49–58 (2014)

    Article  Google Scholar 

  20. S. Bhattacharjee, S. Poddar, S. Roy, J.-D. Huang, B.B. Bhattacharya, Dilution and mixing algorithms for flow-based microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 614–627 (2017)

    Article  Google Scholar 

  21. D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)

    Article  Google Scholar 

  22. S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, Low-cost dilution engine for sample preparation in digital microfluidic biochips, in Proceedings of the International Symposium on Electronic System Design, 2012, pp. 203–207

    Google Scholar 

  23. V. Ananthanarayanan, W. Thies, Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4(1), 1 (2010)

    Article  Google Scholar 

  24. G. Chen, Y. Lin, J. Wang, Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3), 497–503 (2006)

    Article  Google Scholar 

  25. J.C. Jokerst, J.M. Emory, C.S. Henry, Advances in microfluidics for environmental analysis. Analyst 137(1), 24–34 (2012)

    Article  Google Scholar 

  26. S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Microfluidics for food, agriculture and biosystems industries. Lab Chip 11(9), 1574–1586 (2011)

    Article  Google Scholar 

  27. J. Wang, Microchip devices for detecting terrorist weapons. Anal. Chim. Acta 507(1), 3–10 (2004)

    Article  Google Scholar 

  28. K. Choi, A.H. Ng, R. Fobel, A.R. Wheeler, Digital microfluidics. Annu. Rev. Anal. Chem. 5(1), 413–440 (2012)

    Article  Google Scholar 

  29. R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)

    Article  Google Scholar 

  30. M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)

    Article  Google Scholar 

  31. H.-H. Shen, S.-K. Fan, C.-J. Kim, D.-J. Yao, EWOD microfluidic systems for biomedical applications. Microfluid. Nanofluid. 16(5), 965–987 (2014)

    Article  Google Scholar 

  32. K. Bazargan, R. Kastner, M. Sarrafzadeh, et al., Fast template placement for reconfigurable computing systems. IEEE Des. Test Comput. 17(1), 68–83 (2000)

    Article  Google Scholar 

  33. D. Grissom, P. Brisk, Fast online synthesis of generally programmable digital microfluidic biochips, in Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, 2012, pp. 413–422

    Google Scholar 

  34. D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)

    Article  Google Scholar 

  35. J. Soukup, Fast maze router, in Proceedings of the IEEE/ACM Design Automation Conference, 1978, pp. 100–102

    Google Scholar 

  36. T.-W. Huang, T.-Y. Ho, A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips, in Proceedings of the IEEE International Conference on Computer Design, 2009, pp. 445–450

    Google Scholar 

  37. K. Chakrabarty, Design automation and test solutions for digital microfluidic biochips. IEEE Trans. Circuits Syst. I 57(1), 4–17 (2010)

    Article  MathSciNet  Google Scholar 

  38. T. Xu, K. Chakrabarty, Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 4(3), 11 (2008)

    Article  Google Scholar 

  39. P.-H. Yuh, C.-L. Yang, Y.-W. Chang, Bioroute: a network-flow-based routing algorithm for the synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(11), 1928–1941 (2008)

    Article  Google Scholar 

  40. T. Xu, K. Chakrabarty, Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)

    Article  Google Scholar 

  41. Y.-J. Shin, et al., Machine vision for digital microfluidics. Rev. Sci. Instrum. 81(1), 014302 (2010)

    Article  Google Scholar 

  42. C.-L. Sotiropoulou, L. Voudouris, C. Gentsos, A.M. Demiris, N. Vassiliadis, S. Nikolaidis, Real-time machine vision FPGA implementation for microfluidic monitoring on lab-on-chips. IEEE Trans. Biomed. Circuits Syst. 8(2), 268–277 (2014)

    Article  Google Scholar 

  43. D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)

    Article  Google Scholar 

  44. G.-R. Lu, G.-M. Huang, A. Banerjee, B.B. Bhattacharya, T.-Y. Ho, H.-M. Chen, On reliability hardening in cyber-physical digital-microfluidic biochips, in Proceedings of the Asia and South Pacific Design Automation Conference, 2017, pp. 518–523

    Google Scholar 

  45. D.T. Grissom, J. McDaniel, P. Brisk, A low-cost field-programmable pin-constrained digital microfluidic biochip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(11), 1657–1670 (2014)

    Article  Google Scholar 

  46. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  47. Y. Luo, K. Chakrabarty, Design of pin-constrained general-purpose digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(9), 1307–1320 (2013)

    Article  Google Scholar 

  48. D. Grissom, P. Brisk, A field-programmable pin-constrained digital microfluidic biochip, in Proceedings of the IEEE/ACM Design Automation Conference, 2013, p. 46

    Google Scholar 

  49. Illumina, Illumina neoprep library prep system 2016. http://www.illumina.com/systems/neoprep-library-system.html/

  50. Baebies, Inc., Baebies SEEKER 2017. http://baebies.com/products/seeker/

  51. J. Karow, Oxford nanopore provides update on tech developments at London user meeting 2017. http://www.illumina.com/systems/neoprep-library-system/performance-specifications.html

  52. R. Trojok, A. Volpato, M. Alistar, J. Schubert, Auryn: adaptor for general-purpose digital microfluidic biochips, July 2016

    Google Scholar 

  53. R. Fobel, C. Fobel, A.R. Wheeler, Dropbot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102(19), 193513 (2013)

    Article  Google Scholar 

  54. D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, P. Brisk, An open-source compiler and PCB synthesis tool for digital microfluidic biochips. Integr. VLSI J. 51, 169–193 (2015)

    Article  Google Scholar 

  55. D. Mark, S. Haeberle, G. Roth, F. Von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, in Microfluidics Based Microsystems (Springer, Dordrecht, 2010), pp. 305–376

    Google Scholar 

  56. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  57. J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  58. T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)

    Article  Google Scholar 

  59. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)

    Article  Google Scholar 

  60. L.M. Fidalgo, S.J. Maerkl, A software-programmable microfluidic device for automated biology. Lab Chip 11(9), 1612–1619 (2011)

    Article  Google Scholar 

  61. S. Dube, J. Qin, R. Ramakrishnan, Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8), e2876 (2008)

    Article  Google Scholar 

  62. K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(1), 55–68 (2017)

    Article  Google Scholar 

  63. R. Silva, S. Bhatia, D. Densmore, A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive. Lab Chip 16(14), 2730–2741 (2016)

    Article  Google Scholar 

  64. M. Ibrahim, K. Chakrabarty, U. Schlichtmann, CoSyn: efficient single-cell analysis using a hybrid microfluidic platform, in Proceedings of the Conference on Design, Automation and Test in Europe, Lausanne, March 2017

    Google Scholar 

  65. L.R. Volpatti, A.K. Yetisen, Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J., Ibrahim, M., Chakrabarty, K., Karri, R. (2020). Cyberphysical Microfluidic Biochips. In: Secure and Trustworthy Cyberphysical Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-18163-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18163-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18162-8

  • Online ISBN: 978-3-030-18163-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics