Skip to main content

IoT Networking and Communication Layer

  • Chapter
  • First Online:
The Era of Internet of Things

Abstract

The communication layer is considered as the backbone of the IoT systems. It is the main channel between the application layer and different operating activities in the IoT system. The whole physical system is loaded with amounts of data and information that need to be shared with other nodes. Therefore, it is needed to set up a suitable connection network among these nodes through a communication protocol. The communication could be wire-connected or wireless based on the protocol defined by the designer. Moreover, networks are very vital components in IoT to connect things to the outside world of internet. IoT requires an intelligent network infrastructure. Any IoT hardware can connect to the internet via the following [1–17]:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Network Connectivity for IoT. Retrieved from https://6s062.github.io/6MOB/2017/materials/lec5-IOTx-WirelessNetworkConnectivity.pdf.

  2. Santitoro, R. Metro Ethernet services—A technical overview. Metro Ethernet Forum.

    Google Scholar 

  3. Tonner, D. (2007) The bluetooth blues | information age. Web.archive.org. [Online]. Retrieved July 19, 2017, from https://web.archive.org/web/20071222231740/, http://www.informationage.com/article/2001/may/the_bluetooth_blues

  4. BR/EDR: Point-to-Point | Bluetooth Technology Website. Bluetooth.com, 2017. [Online]. Retrieved July 19, 2017, from https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/br-edr.

  5. Bluetooth basics—learn.sparkfun.com. Learn.sparkfun.com, 2017. [Online]. Retrieved July 18, 2017, from https://learn.sparkfun.com/tutorials/bluetooth-basics/how-bluetooth-works.

  6. Nield, D. (2017). Bluetooth 5: Everything you need to know. TechRadar. [online]. Retrieved July 18, 2017, from http://www.techradar.com/news/networking/bluetooth-5-everything-you-need-to-know-1323060.

  7. Sims, G. (2017). The truth about Bluetooth 5 - Gary explains. Android Authority. [Online]. Retrieved August 8, 2017, from http://www.androidauthority.com/bluetooth-5-speed-range-762369/.

  8. Mohammed, K. S. (2009). FPGA implementation of PPM I-UWB baseband transceiver. In Proceedings of the European computing conference. Boston, MA: Springer.

    Google Scholar 

  9. Salah, K. (2008). Design and FPGA implementation of non-data aided timing and carrier recovery techniques for EDR Bluetooth standard. Signal processing algorithms, architectures, arrangements, and applications (SPA), 2008. IEEE.

    Google Scholar 

  10. Salah, K. (2006). FPGA implementation of Bluetooth 2.0 transceiver. Proceedings of the 5th WSEAS international conference on system science and simulation in engineering. World Scientific and Engineering Academy and Society (WSEAS).

    Google Scholar 

  11. What is WiFi and How Does it Work? CCM, 2017. [Online]. Retrieved July 18, 2017, from http://ccm.net/faq/298-what-is-wifi-and-how-does-it-work.

  12. Lendino, J. (2016). What is 802.11ac Wi-fi, and how much faster than 802.11n is it? - ExtremeTech", ExtremeTech. [Online]. Retrieved July 24, 2017, from https://www.extremetech.com/computing/160837-what-is-802-11ac-and-how-much-faster-than-802-11n-is-it.

  13. Explaining wireless sensor nodes: Zigbee vs. WiFI. YouTube, 2017. [Online]. Retrieved July 18, 2017, from https://www.youtube.com/watch?v=buV11ZPJ7MQ.

  14. CCTV Institute | CCTV Surveillance Smart-homes Home Automation Zigbee. CCTV Institute, 2017. [Online]. Retrieved July 18, 2017, from http://cctvinstitute.co.uk/zigbee/.

  15. Shelby, Z., Hartke, K., Bormann, C. and Frank, B. (2013). Constrained Application Protocol (CoAP), draft-ietf-corecoap-18, Internet Eng. Fremont, CA: Task Force (IETF).

    Google Scholar 

  16. Locke, D. (2010). MQ Telemetry Transport (MQTT) v3. 1 Protocol Specification. Markham, ON: IBM Developer Works, Tech. Lib.

    Google Scholar 

  17. Tan, L. & Wang, N. (2010). Future internet: The internet of things. Advanced computer theory and engineering (ICACTE), 2010 3rd International Conference on: V5–376.

    Google Scholar 

  18. Retrieved from https://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols/

  19. Gorrepotu, R. (2018). Sub-1GHz miniature wireless sensor node for IoT applications. Internet of Things, 1–2, 27–39. Elsevier.

    Article  Google Scholar 

  20. Pokhrel, S. R., & Williamson, C. (2018). Modeling compound TCP over WiFi for IoT. IEEE/ACM Trans. Netw., 26, 864–878.

    Article  Google Scholar 

  21. Retrieved from www.fujitsu.com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf

  22. Retrieved from https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm

  23. Strategy, I. & Unit, P. (2005). ITU Internet Reports 2005: The internet of things. Geneva: International Telecommunication Union (ITU).

    Google Scholar 

  24. Li, X., Xuan, Z., & Wen, L. (2011). Research on the architecture of trusted security system based on the internet of things. Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on. 1172–1175.

    Google Scholar 

  25. Porkodi, R., & Bhuvaneswari, V. (2014). The internet of things (IoT) applications and communication enabling technology standards: An overview. Intelligent Computing Applications (ICICA), 2014 International Conference on. 324–329.

    Google Scholar 

  26. Samie, F., Bauer, L., & Henkel, J. (2016). IoT technologies for embedded computing: A survey. Hardware/software Codesign and system synthesis (CODES+ ISSS), 2016 international conference on. 1–10.

    Google Scholar 

  27. Salman, T. (2015). Internet of things protocols and standards. Affairs, M. Of E. N.D. 2015. Internet of things in the Netherlands applications trends and potential impact on radio spectrum.Startix.

    Google Scholar 

  28. Paavola, M. (2007). Wireless technologies in process automation-review and an application example. Control Engineering Laboratory, University of Oulu.

    Google Scholar 

  29. Le, A., Loo, J., Lasebae, A., Aiash, M., & Luo, Y. (2012). 6LoWPAN: A study on QoS security threats and countermeasures using intrusion detection system approach. International Journal of Communication Systems, 25(9), 1189–1212.

    Article  Google Scholar 

  30. Martha Zemede, K. T. (2015). Explosion of the internet of things: What does it mean for wireless devices?. Keysight Technologies.

    Google Scholar 

  31. Goursaud, C., & Gorce, J.-M. (2015). Dedicated networks for IoT: PHY/MAC state of the art and challenges. EAI endorsed transactions on internet of things.

    Google Scholar 

  32. Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6), 92.

    Article  Google Scholar 

  33. Rathnayaka, A. D., Potdar, V. M., & Kuruppu, S. J. (2011). Evaluation of wireless home automation technologies. Digital Ecosystems and Technologies Conference (DEST), 2011 Proceedings of the 5th IEEE International Conference on: 76–81.

    Google Scholar 

  34. Aragues, A., Martinez, I., Del Valle, P., Muñoz, P., Escayola, J., & Trigo, J. D. (2012). Trends in entertainment, home automation and e-health: Toward cross-domain integration. IEEE Communications Magazine, 50(6), 160.

    Article  Google Scholar 

  35. López, P., Fernández, D., Jara, A. J. & Skarmeta, A. F. (2013). Survey of internet of things technologies for clinical environments. Advanced Information Networking and Applications Workshops (WAINA), 2013 27t International Conference on: 1349–1354.

    Google Scholar 

  36. Tabish, R., Mnaouer, A. B., Touati, F. & Ghaleb, A. M. (2013). A comparative analysis of BLE and 6LoWPAN for U-HealthCare applications. GCC Conference and Exhibition (GCC), 2013 7th IEEE. 286–291.

    Google Scholar 

  37. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys \& Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  38. Kuzlu, M., Pipattanasomporn, M. & Rahman, S. (2015). Review of communication technologies for smart homes/building applications. Innovative Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE: 1–6.

    Google Scholar 

  39. Samuel, S. S. I. (2016). A review of connectivity challenges in IoT-smart home. Big data and Smart City (ICBDSC), 2016 3rd MEC international conference on: 1–4.

    Google Scholar 

  40. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials.

    Google Scholar 

  41. Frantz, T. L. & Carley, K. M. (2005). A formal characterization of cellular networks.

    Google Scholar 

  42. Hossen, M., Kabir, A., Khan, R. H., Azfar, A. & others. 2010. Interconnection between 802.15. 4 devices and IPv6: implications andexisting approaches. arXiv preprint arXiv:1002.1146.

    Google Scholar 

  43. Azamuddin Bin Ab Rahman, R. J. (2015). Comparison of Internet of Things (IoT) Data Link Protocols.

    Google Scholar 

  44. Alliance, L. 2015. A technical overview of LoRa and LoRaWAN. White Paper, November.

    Google Scholar 

  45. Shreya Shah, T. M. n.d. Security of NFC Data. International Journal of Advanced Research in Computer Science and Software Engineering, 6, (ISSN: 2277 128X).

    Google Scholar 

  46. Hughes, J., Yan, J., & Soga, K. (2015). Development of wireless sensor network using bluetooth low energy (BLE) for construction noise monitoring. International Journal on Smart Sensing and Intelligent Systems, 8(2), 1379–1405.

    Article  Google Scholar 

  47. Ahmad, A. (2005). Wireless and mobile data networks. Wiley.

    Google Scholar 

  48. Gomez, C., Oller, J., & Paradells, J. (2012). Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9), 11734–11753.

    Article  Google Scholar 

  49. Sanchez-Iborra, R., & Cano, M.-D. (2016). State of the art in LP-wan solutions for industrial IoT services. Sensors, 16(5), 708.

    Article  Google Scholar 

  50. Cerruela Garcia, G., Luque Ruiz, I., & Gómez-Nieto, M. Á. (2016). State of the art, trends and future of Bluetooth low energy, near field communication and visible light communication in the development of smart cities. Sensors, 16(11), 1968.

    Article  Google Scholar 

  51. Frenzel, L. (2012). The fundamentals of short-range wireless technology. Electronic Design.

    Google Scholar 

  52. Alarcon-Aquino, V., Dominguez-Jimenez, M., & Ohms, C. (2008). Desing and implementation of a security layer for RFID systems. Journal of Applied Research and Technology, 6(2), 69–82.

    Google Scholar 

  53. Amin, M., Reaz, M., Jalil, J., & Rahman, L. (2012). Digital modulator and demodulator IC for RFID tag employing DSSS and barker code. Journal of Applied Research and Technology, 10(6), 819–825.

    Google Scholar 

  54. Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers.

    Google Scholar 

  55. Lu, C.-W., Li, S.-C. & Wu, Q. 2011. Interconnecting ZigBee an 6LoWPAN wireless sensor networks for smart grid applications. Sensing Technology (ICST), 2011 Fifth International Conference on: 267–272.

    Google Scholar 

  56. Salah, K. (2006). FPGA implementation of Bluetooth 2.0 transceiver. Proceedings of the 5th WSEAS international conference on system science and simulation in engineering. World Scientific and Engineering Academy and Society (WSEAS), 2006.

    Google Scholar 

  57. Chang, K. H. (2014). Bluetooth: A viable solution for IoT? [industry perspectives]. IEEE Wireless Communications, 21(6), 6–7.

    Article  Google Scholar 

  58. Pandya, H. B., Champaneria, T. A. Internet of things: Survey and case studies. 2015 international conference on electrical, electronics, signals, communication and optimization (EESCO), Jan 2015, pp. 1–6.

    Google Scholar 

  59. ABI Research. Bluetooth 5 evolution will lead to widespread deployments on the IoT landscape. London, July 2016.

    Google Scholar 

  60. Rappaport, T. S. (2002). Wireless communications: Principles and practice. Prentice Hall.

    Google Scholar 

  61. Bluetooth Special Interest Group. (2016). Bluetooth Core Specifications. Retrieved from https://www.bluetooth.com/specifications/bluetooth-core specification.

  62. Retrieved from https://z-wavealliance.org/

  63. Retrieved from http://www.libelium.com/products/waspmote/

  64. Retrieved from http://www.libelium.com/products/meshlium/

  65. Safeer, K. P., Gupta, P., Shakunthala, D. T., Sundersheshu, B. S., & Padaki, V. C. (2008). Wireless sensor network for wearable physiological monitoring. Journal of Networks, 3(5), 21–29.

    Google Scholar 

  66. Retrieved from https://www.techspot.com/article/1769-wi-fi-6-explained/?fbclid=IwAR3vs-LO-p6CT0WXD5fB7QOoNWOTSLCI10L8LdnrL5Tkt0l8ldtpuySc4-I

  67. Retrieved from http://www.vizocom.com/blog/wimax-differ-wifi/

  68. Wang et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  69. Akpakwu, et al. (2018). A survey on 5G networks for the internet of.Ings: Communication technologies and challenges. IEEE Access, 6, 3619–3647.

    Article  Google Scholar 

  70. Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (Mar. 2016). Internet of things in the 5G era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.

    Article  Google Scholar 

  71. Retrieved from http://www.futuretimeline.net/blog/2015/01/22.htm#.V9e4TvmLRhE

  72. Retrieved from http://www.phonearena.com/news/1G-2G-3G-4G-The-evolution-of-wireless generations_id46952.

  73. Retrieved from http://gizmodo.com/what-is-5g-and-how-will-it-make-my-life-better-1760847799

  74. Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of narrowband IoT in LTE Rel-13. Proceedings of the IEEE conference on standards for communications and networking (CSCN), Berlin, Germany, 31 October–2 November 2016; pp. 1–7.

    Google Scholar 

  75. Zayas, A.D., & Merino, P. The 3GPP NB-IoT system architecture for the internet of things. Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 277–282.

    Google Scholar 

  76. Chen, M., Miao, Y., Hao, Y., & Hwang, K. (2017). Narrow band internet of things. IEEE Access, 5, 20557–20577.

    Article  Google Scholar 

  77. Adhikary, A., Lin, X., & Wang, Y. P. E. (2017). Performance evaluation of NB-IoT coverage. IEEE Symposium on Communications and Vehicular Technology.

    Google Scholar 

  78. Boisguene, R., Tseng, S. C., Huang, C. W., Lin, P. (2017). A survey on NB-IoT downlink scheduling: Issues and potential solutions. 13th Int. Wirel. Commun. Mob. Comput. Conf.

    Google Scholar 

  79. IWCMC. (2017). pp. 547–551, 2017.

    Google Scholar 

  80. NB-IoT vs LoRa technology - which could take gold? 2016. Retrieved from https://www.lora- alliance.org/lorawan-whitepapers.

  81. “Sigfox-Iot-Technology-Overview @ Www.Sigfox.Com.” [Online]. Retrieved from https://www.sigfox.com/en/sigfox-iot-technology- overview.

  82. Retrieved from https://neul.com/

  83. Www.Lora-Alliance.Org. [Online]. Retrieved from https://www.lora-alliance.org/.

  84. Se mtech Corporation. LoRa modulation basics, 2015. Retrieved from https://www.semtech.com/technology

  85. Bor, M., Roedig, U. (2017). Lo Ra transmission parameter selection. 2017 13th International Conference on Distributed Computing Systems. pp. 27–34.

    Google Scholar 

  86. Robert, J., Heuberger, A. (2017). LPWAN downlink using broadcast transmitters. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, 2017.

    Google Scholar 

  87. Lo RaWAN TM 101, A technical introduction, 2017. Retrieved from https://www.lora -alliance.org/lorawan-whitepapers “products @ www.semtech.com” [Online]. Retrieved from https://www.semtech.com/products.

  88. Marais, J. M., Malekian, R., Abu-Mahfouz, A. M. Lo Ra and LoRaWAN testbeds: A review. 2017 IEEE AFRICON Science Technology Innovation. Africa, AFRICON 2017, pp. 1496–1501, 2017.

    Google Scholar 

  89. J. de Carvalho Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic, and A. L. L. Aquino, LoRaWAN—a low power WAN protocol for internet of things: A review and opportunities. 2017 2nd International Multidisciplinary Conference on Computer and Energy Science, pp. 1–6, 2017.

    Google Scholar 

  90. C. P. San, J. Bergs, C. Hawinkel, and J. Famaey, “Comparison of Lo RaWAN classes and their power consumption,” IEEE Symposium on Communications and Vehicular Technology, pp. 8–13, 2017.

    Google Scholar 

  91. LoRaWAN 1.1 Specification. (2017). Retrieved October 22, 2017, from http://lora-alliance.org/lorawan-for-developers.

  92. Retrieved from https://www.electronics-notes.com/articles/audio-video/broadcast-tv-television/what-is-dvb-digital-video-broadcasting-tutorial.php.

  93. Retrieved from https://www.orbcomm.com/en/networks/satellite.

  94. Narayanan, R. (2018). Revisiting software defined radios in the IoT era. ACM.

    Google Scholar 

  95. Mohammed, K. S. FPGA implementation of PPM I-UWB baseband transceiver. Proceedings of the European computing conference. Boston, MA: Springer, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, K.S. (2019). IoT Networking and Communication Layer. In: The Era of Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-18133-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18133-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18132-1

  • Online ISBN: 978-3-030-18133-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics