Skip to main content

Developments in Solar Powered Micro Gas Turbines and Waste Heat Recovery Organic Rankine Cycles

  • Conference paper
  • First Online:
New Technologies, Development and Application II (NT 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 76))

Abstract

This main objective of this paper is to present recent developments and future challenges in two distributed power generation technologies that have the potential to play an important role in the future low carbon power generation. The first is parabolic solar dish systems powering a micro gas turbine by focusing solar energy to a focal area to heat the air in a Brayton cycle. The use of micro gas turbines can lead efficient, reliable and cost-effective technology. The second technology is small scale organic Rankine cycles (ORCs) that can be used to generate electricity from low grade heat, either generated as waste from industry processes and thermal plants, or from concentrated solar power. Although large scale ORCs have been successfully commercialised, there is still research and development required to achieve wide commercialisation at small scale, particularly regarding expanders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlovic, T.M., Radonjic, I., Milosavljevi, D., Pantic, L.: A review of concentrating solar power plants in the world and their potential use in Serbia. Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012)

    Article  Google Scholar 

  2. Buck, R., Bräuning, T., Denk, T., Pfänder, M., Schwarzbözl, P., Téllez, F.: Solar-hybrid gas turbine-based power tower systems (REFOS). J. Solar Energy Eng. 124(1), 2–9 (2002)

    Article  Google Scholar 

  3. English, R.E.: Technology for Brayton-cycle space power plants using solar and nuclear energy. NASA-TP-2558 (1986)

    Google Scholar 

  4. Six, L., Elkins, R.: Solar Brayton engine/alternator set. In: Parabolic Dish Solar Thermal Power Annual Program Review, pp. 23–36 (1981)

    Google Scholar 

  5. Dickey, B.: Test results from a concentrated solar microturbine Brayton cycle integration. ASME GT2011-45918 (2011)

    Google Scholar 

  6. Sinai, J., Sugarmen, C., Fisher, U.: Adaptation and modification of gas turbines for solar energy applications. ASME GT2005 (68122) (2005)

    Google Scholar 

  7. Alzaili, J., Sayma, A.: Challenges in the development of micro gas turbines for concentrated solar power systems. In: 8th International Gas Turbine Conference, Brussels, Belgium (2016)

    Google Scholar 

  8. Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., Lemort, V.: Techno-economic survey of organic Rankine cycle (ORC) systems. Renew. Sust. Energy Rev. 22, 168–186 (2013). https://doi.org/10.1016/j.rser.2013.01.028

    Article  Google Scholar 

  9. www.orc-world-map.org. Accessed 23 Apr 2018

  10. Lemmens, S.: Cost engineering techniques and their applicability for cost estimation of organic Rankine cycle systems. Energies 9(7), 485 (2016). https://doi.org/10.3390/en9070485

    Article  Google Scholar 

  11. Vick, M.J., Heyes, A., Pullen, K.: Design overview of a 3 kW recuperated ceramic turboshaft engine. ASME GT2009-60297 (2009)

    Google Scholar 

  12. Khader, M.A., Sayma, A.I.: Drag reduction within radial turbine rotor passages using riblets. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2018). https://doi.org/10.1177/0954408918819399

  13. Thompson, P.: Fundamental derivative in gas-dynamics. Phys. Fluids 14(90), 1843 (1971)

    Article  Google Scholar 

  14. Galiana, F.J.D., Wheeler, A.P.S., Ong, J.: A study on the trailing-edge losses in organic Rankine cycle turbines. In: ASME Turbo Expo 2015, 15–19 June, Montreal Canada (2015)

    Google Scholar 

  15. Moustapha, H., Zelesky, M.F., Baines, N.C., Japiske, D.: Axial and Radial Turbines, Concepts. NREC, Inc. (2003)

    Google Scholar 

  16. Wheeler, A.P.S., Ong, J.: The role of dense gas dynamyics on organic Rankine cycle turbine performance. J. Eng. Gas Turb. Power 135(10), 9 (2013)

    Article  Google Scholar 

  17. Pasquale, D., Ghidoni, A., Rebay, S.: Shape optimization of an organic Rankine cycle radial turbine nozzle. J. Eng. Gas Turb. Power 135(4), 13 (2013)

    Article  Google Scholar 

  18. Hoffren, J., Talonpoika, T., Larjola, J., Siikonen, T.: Numerical simulation of real-gas flow in a supersonic turbine nozzle ring. J. Eng. Gas Turb. Power 124(4), 9 (2002)

    Article  Google Scholar 

  19. Harinck, J., Turunen-Saaresti, T., Colonna, P., Rebay, S., van Buijtenen, J.: Computational study of a high-expansion ratio radial organic Rankine cycle turbine stator. J. Eng. Gas Turb. Power 132(5), 6 (2010)

    Article  Google Scholar 

  20. Harinck, J., Pasquale, D., Pecnik, R., Buijtenen, J.V., Colonna, P.: Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proc. Inst. Mech. Eng. Part A J. Power Energy 227(6), 637–645 (2013)

    Google Scholar 

  21. Wheeler, A.P.S., Ong, J.: A study on the three-dimensional unsteady real-gas flows within a transonic ORC turbine. In: ASME Turbo Expo 2014, 16–20 June, Dusseldorf, Germany (2014)

    Google Scholar 

  22. Cameretti, M.C., Ferrara, F., Gimelli, A., Tuccillo, R.: Employing micro-turbine components in integrated Solar-MGT-ORC power plants. In: ASME Turbo Expo 2015, 15–19 June, Montreal, Canada (2015)

    Google Scholar 

  23. Wong, C.S., Krumdieck, S.: Scaling of gas turbine from air to refrigerants for organic Rankine cycles using similarity concept. J. Eng. Gas Turb. Power 138(6), 10 (2015)

    Google Scholar 

  24. Astolfi, M., Macchi, E.: Efficiency correlations for axial-flow turbines working with non-conventional fluids. In: 3rd International Seminar on ORC Power Systems, 12–14 October, Brussels, Belgium (2015)

    Google Scholar 

  25. White, M., Sayma, A.I.: The application of similitude theory for the performance prediction of radial turbines within small-scale low-temperature organic Rankine cycles. J. Eng. Gas Turb. Power 137(12), 10 (2015)

    Article  Google Scholar 

  26. White, M., Sayma, A.I.: The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles. In: 9th International Conference on Compressors and their Systems, London, UK (2015)

    Google Scholar 

  27. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulnaser Sayma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alzaili, J., White, M., Sayma, A. (2020). Developments in Solar Powered Micro Gas Turbines and Waste Heat Recovery Organic Rankine Cycles. In: Karabegović, I. (eds) New Technologies, Development and Application II. NT 2019. Lecture Notes in Networks and Systems, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-18072-0_51

Download citation

Publish with us

Policies and ethics