Advertisement

Socio-Cyber-Physical Systems Alternative for Traditional Manufacturing Structures

  • Elvis HozdićEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 76)

Abstract

This work presents a new concept for the restructuring of systemic and organization manufacturing structures in manufacturing enterprises. In the proposed concept is the role of man improved and the role of manager will be given to man, in real time. It is developed the basic concept of socio-cyber-physical manufacturing systems (SCPMS) that represents a building blocks for the new conception of an advanced manufacturing systems in a spirit of socio-cyber-physical systems (SCPS). The proposed concepts enable cybernetization of the functional and managerial competences of the manufacturing structures. This approach aims to improve the performance of manufacturing systems by increasing their productivity, availability, responsiveness and agility, all of which increase competitiveness of manufacturing companies.

Keywords

Cyber-physical systems Industry 4.0 Manufacturing systems Socio-cyber-physical manufacturing systems 

References

  1. 1.
    Hozdić, E., Jurković, Z.: Cybernetization of industrial product-service systems in network environment. In: New Technologies, Development and Application, pp. 262–270. Springer (2019)Google Scholar
  2. 2.
    Bauernhansl, T.: Industry 4.0: challenges and opportunities for the automation industry. In: 7th EFAC Assembly Technology Conference 2013 (2013)Google Scholar
  3. 3.
    Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K.: Cyber-physical systems in manufacturing. CIRP Ann. Manuf. Technol. 65, 621–641 (2016)CrossRefGoogle Scholar
  4. 4.
    Hozdić, E.: Smart factory for Industry 4.0: a review. Int. J. Modern Manuf. Technol. VII (2015)Google Scholar
  5. 5.
    Jovane, F., Koren, Y., Boer, C.R.: Present and future of flexible automation: towards new paradigms. CIRP Ann. Manuf. Technol. 52, 543–560 (2003)CrossRefGoogle Scholar
  6. 6.
    Gill, H.: NSF perspective and status on cyber-physical systems. In: National Workshop on Cyber-Physical Systems (2006)Google Scholar
  7. 7.
    Peklenik, J.: Fertigungskybernetik, Eine Neue Wissenschaftliche Dusziplin Fur Die Produktionstechnik (Festvortrag anlasslich der Verleihung des Georg - Schlesinger Preises 1988 des Landes Berlin, 1988) (1988)Google Scholar
  8. 8.
    Morosini, E., Hartmann, J., Makuschewitz, T., Scholz-Reiter, B.: Towards socio-cyber-physical systems in production networks. Procedia CIRP 7, 49–54 (2013)CrossRefGoogle Scholar
  9. 9.
    Merchant, M.E.: The manufacturing system concept in production engineering research. CIRP An. X 2, 77 (1962)Google Scholar
  10. 10.
    Peklenik, J.: Contribution to a correlation theory for the grinding process. In: ASME Production Engineering Conference; Journal of Engineering for Industry, vol. 86, No. 2 (1964). (1963)CrossRefGoogle Scholar
  11. 11.
    Sata, T.: New identification methods for manufacturing processes. In: Advances in Manufacturing Systems, Research and Development, pp. 11–22. Pergamon Press, Oxford (1971)Google Scholar
  12. 12.
    Spur, G.: Betrachtungen zur Optimierung des Fertigungssystems, Werkzeugmaschine. Werkstattstechnik 57, 411–417 (1967)Google Scholar
  13. 13.
    High Level Group: High Level Group on Key Enabling Technologies (2010)Google Scholar
  14. 14.
    Wiendahl, H.P., Nyhuis, P., Hartmann, W.: Should CIRP develop a production theory? motivaton - development path – framework. In: Sustainable Production and Logistics in Global Networks, Conference Proceedings of 43rd CIRP International Conference on Manufacturing Systems, pp. 3–18 (2010)Google Scholar
  15. 15.
    Westkämper, E., Hummel, V.: The stuttgart enterprise - integrated engineering of strategic & operational functions. In: 38th CIRP ISMS (2005)Google Scholar
  16. 16.
    Zaletelj, V., Sluga, A., Butala, P.: The B2MN approach to manufacturing network modeling. In: Proceedings of the 6th International Workshop on Emergent Synthesis IWES 2006, pp. 9–16 (2006)Google Scholar
  17. 17.
    Peklenik, J.: A new structure of an adaptable manufacturing system based on elementary work units and network integration. In: 7th International Conference AMST 2005, pp. 27–40. Springer (2005)Google Scholar
  18. 18.
    Butala, P., Sluga, A.: Autonomous work systems in manufacturing networks. CIRP Ann. Manuf. Technol. 55, 521–524 (2006)CrossRefGoogle Scholar
  19. 19.
    Zupančič, R., Sluga, A., Butala, P.: A service network for the support of manufacturing operations. Int. J. Comput. Integr. Manuf. 25, 790–803 (2012)CrossRefGoogle Scholar
  20. 20.
    Vogel-Heuser, B., Kegel, G., Wucherer, K.: Global information Architecture for Industrial Automation. atp Ed. - Sutomatisierungstechnische Prax. 51 (2009)CrossRefGoogle Scholar
  21. 21.
    Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  22. 22.
    Hozdić, E.: Cybernetization of manufacturing systems. In: 13th International Scientific Conference - MMA2018 Flexible Technologies, Novi Sad, Serbia (2018)Google Scholar
  23. 23.
    Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Department of Control and Manufacturing SystemsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations