Skip to main content

The Bianchi Classification of the Three-Dimensional Lie Algebras and Homogeneous Cosmologies and the Mixmaster Universe

  • Chapter
  • First Online:

Abstract

The Bianchi classification of the three-dimensional Lie algebras and of the spatially homogeneous universes is presented in a rather pedagogical manner. The dynamics of the Bianchi-I, Bianchi-II and Bianchi-IX universes are discussed in detail. A special attention is paid to the phenomenon of the oscillatory approach to the cosmological singularity (BKL) known also as the Mixmaster universe. The stochasticity in cosmology and the connection between cosmological billiards and infinite-dimensional Lie algebras are briefly illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Friedman, Über die Krümmung des Raumes. Z. Phys. 10, 377 (1922)

    Article  ADS  Google Scholar 

  2. A. Friedman, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21, 326 (1924)

    Article  ADS  MATH  Google Scholar 

  3. G. Lemaître, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nèbuleuses extra-galactiques. Ann. de la Soc. Scien. de Bruxelles 47, 49 (1927)

    ADS  MATH  Google Scholar 

  4. G. Lemaître, The expanding universe. Mon. Not. Roy. Astron. Soc. 91, 490 (1931)

    Article  ADS  MATH  Google Scholar 

  5. A.A. Starobinsky, Stochastic De sitter (inflationary) stage in the early universe, in Field Theory, Quantum Gravity and Strings, ed. by H.J. DeVega, N. Sanchez (Springer-Verlag, Berlin, 1986)

    Google Scholar 

  6. A.D. Linde, Particle Physics and Inflationary Cosmology (Harward Academic Publishers, Brighton, 1990)

    Book  Google Scholar 

  7. A.G. Riess et al. [Supernova Search Team], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Google Scholar 

  8. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517 565 (1999)

    Google Scholar 

  9. E.M. Lifshitz, On the gravitational stability of the expanding universe. J. Phys. (USSR) 10, 116 (1946)

    Google Scholar 

  10. V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532 (1981)

    ADS  Google Scholar 

  11. L. Bianchi, Sugli spazi a tre dimensioni che ammettono un gruppo continuo di moviment. Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Terza 11, 267 (1898)

    Google Scholar 

  12. A. Einstein, the foundation of the general theory of relativity. Annalen Phys. 49(7), 769 (1916)

    Google Scholar 

  13. A.H. Taub, Empty space-times admitting a three parameter group of motions. Annals Math. 53, 472 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Krasinski, C.G. Behr, E. Schucking, F.B. Estabrook, H.D. Wahlquist, G.F.R. Ellis, R. Jantzen, W. Kundt, The Bianchi classification in the Schucking-Behr approach. Gen. Rel. Grav. textbf35, 475 (2003)

    Google Scholar 

  15. G.F.R. Ellis, M.A.H. MacCallum, A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1979)

    MATH  Google Scholar 

  17. M.P. Ryan, L.C. Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press, Princeton, 1975)

    Google Scholar 

  18. E.M. Lifshitz, I.M. Khalatnikov, Investigations in relativistic cosmology. Adv. Phys. 12, 185 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  19. V.A. Belinskii, I.M. Khalatnikov, On the nature of the singularities in the general solutions of the gravitational equations. Sov. Phys. JETP 29(5), 911 (1969)

    Google Scholar 

  20. I.M. Khalatnikov, E.M. Lifshitz, General cosmological solution of the gravitational equations with a singularity in time. Phys. Rev. Lett. 24, 76 (1970)

    Article  ADS  Google Scholar 

  21. V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  22. V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz, A general solution of the Einstein equations with a time singularity. Adv. Phys. 31, 639 (1982)

    Article  ADS  Google Scholar 

  23. V. Belinski, M. Henneaux, The Cosmological Singularity (Cambridge University Press, 2018)

    Google Scholar 

  24. C.W. Misner, Mixmaster universe. Phys. Rev. Lett. 22, 1071 (1969)

    Article  ADS  MATH  Google Scholar 

  25. E.M. Lifshitz, I.M. Lifshitz, I.M. Khalatnikov, Asymptotic analysis of oscillatory mode of approach to a singularity in homogeneous cosmological models. Sov. Phys. JETP 32(1), 173 (1971)

    Google Scholar 

  26. I.M. Khalatnikov, E.M. Lifshitz, K.M. KhaninL, N. Shchur, Y.G. Sinai, On the stochasticity in relativistic cosmology. J. Stat. Phys. 38, 97 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. V.G. Kac, Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1990)

    Book  MATH  Google Scholar 

  28. T. Damour, M. Henneaux, Oscillatory behavior in homogeneous string cosmology models. Phys. Lett. B 488108 (2000); Erratum: [Phys. Lett. B 491, 377 (2000)]

    Google Scholar 

  29. T. Damour, M. Henneaux, E(10), BE(10) and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86, 4749 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Damour, M. Henneaux, B. Julia, H. Nicolai, Hyperbolic Kac–Moody algebras and chaos in Kaluza–Klein models. Phys. Lett. B 509, 323 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. T. Damour, H. Nicolai, Symmetries, singularities and the de-emergence of space. Int. J. Mod. Phys. D 17, 525 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Kobayashi, K. Nomizu, Foundations Of Differential Geometry, vol. 1 (Wiley, Hoboken, 1996)

    MATH  Google Scholar 

  33. B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  34. M. Fecko, Differential Geometry and Lie Groups for Physicists (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  35. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, Hoboken, 2008)

    Google Scholar 

  36. E. Gourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical Relativity (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  37. I.M. Khalatnikov, A.Y. Kamenshchik, A generalization of the Heckmann-Schucking cosmological solution. Phys. Lett. B 553, 119 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. E. Kasner, Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 43, 217 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Heckmann, E. Schucking, Newtonsche und Einsteinsche Kosmologie. Handbuch der Physik, 53, 489 (1959)

    ADS  Google Scholar 

  40. L. Giani, A.Y. Kamenshchik, Hořava-Lifshitz gravity inspired Bianchi-II cosmology and the mixmaster universe. Class. Quant. Grav. 34(8), 085007 (2017)

    Google Scholar 

  41. A.Ya Khinchin, Continued Fractions (Dover, Downers Grove, 1997)

    MATH  Google Scholar 

  42. V.A. Belinski, I.M. Khalatnikov, Effect of scalar and vector fields on the nature of the cosmological singularity. Sov. Phys. JETP 36, 591 (1973)

    ADS  MathSciNet  Google Scholar 

  43. J. Demaret, M. Henneaux, P. Spindel, Nonoscillatory behavior in vacuum Kaluza-Klein cosmologies. Phys. Lett. 164B, 27 (1985)

    Article  ADS  Google Scholar 

  44. J. Demaret, J.L. Hanquin, M. Henneaux, P. Spindel, A. Taormina, The fate of the mixmaster behavior in vacuum inhomogeneous Kaluza-Klein cosmological models. Phys. Lett. B 175, 129 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Demaret, Y. De Rop, M. Henneaux, Are Kaluza-Klein models of the universe chaotic? Int. J. Theor. Phys. 28, 1067 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Damour, P. Spindel, Quantum supersymmetric Bianchi IX cosmology. Phys. Rev. D 90(10), 103509 (2014)

    Google Scholar 

  47. T. Damour, P. Spindel, Quantum supersymmetric cosmological billiards and their hidden Kac–Moody structure. Phys. Rev. D 95(12), 126011 (2017)

    Google Scholar 

  48. V.D. Ivashchuk, V.N. Melnikov, Quantum billiards with branes on product of Einstein spaces. Eur. Phys. J. C 76(5), 287 (2016)

    Google Scholar 

  49. J.M. Heinzle, C. Uggla, Mixmaster: fact and belief. Class. Quant. Grav. 26, 075016 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. N.J. Cornish, J.J. Levin, The mixmaster universe is chaotic. Phys. Rev. Lett. 78, 998 (1997)

    Article  ADS  Google Scholar 

  51. N.J. Cornish, J.J. Levin, Mixmaster universe: a chaotic Farey tale. Phys. Rev. D 55, 7489 (1997)

    Article  ADS  Google Scholar 

  52. O.M. Lecian, BKL maps, Poincaré sections, and quantum scars. Phys. Rev. D 88, 104014 (2013)

    Article  ADS  Google Scholar 

  53. H. Bergeton, E. Czuchry, J.P. Gazeau, P. Małkiewicz, W. Piechocki, Singularity avoidance in a quantum model of the Mixmaster universe. Phys. Rev. D 92, 124018 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. I. Bakas, F. Bourliot, D. Lust, M. Petropoulos, Mixmaster universe in Horava–Lifshitz gravity. Class. Quant. Grav. 27, 045013 (2010)

    Article  ADS  MATH  Google Scholar 

  55. P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  56. S. Mukohyama, Horava-Lifshitz cosmology: a review. Class. Quant. Grav. 27, 223101 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. I.M. Khalatnikov, A.Y. Kamenshchik, Stochastic cosmology, perturbation theories, and Lifshitz gravity. Phys. Usp. 58(9), 878 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yu. Kamenshchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamenshchik, A.Y. (2019). The Bianchi Classification of the Three-Dimensional Lie Algebras and Homogeneous Cosmologies and the Mixmaster Universe. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_3

Download citation

Publish with us

Policies and ethics