Skip to main content

Hearing the Nature of Compact Objects

  • Chapter
  • First Online:
Einstein Equations: Physical and Mathematical Aspects of General Relativity (DOMOSCHOOL 2018)

Abstract

In this article we present results on the quasi-normal mode spectra of compact relativistic objects and discuss under what conditions they can be used to solve the inverse spectrum problem. We start from the one-dimensional wave equation for axial gravitational perturbations of spherically symmetric and non-rotating compact objects in general relativity. It is then shown how WKB methods can be used to approximate the spectrum and reconstruct the underlying perturbation potential by using different Bohr–Sommerfeld rules. The uniqueness and properties of the reconstructed relations are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The approach was known before quantum mechanics, but it became popular there. We want to note that although the terminology might relate it to quantum mechanics, there is no such aspect assumed here. It is an approximate method for finding solutions of the wave equation.

References

  1. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Google Scholar 

  2. B.P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016)

    Google Scholar 

  3. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)

    Google Scholar 

  4. B.P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)

    Google Scholar 

  5. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)

    Google Scholar 

  6. B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Google Scholar 

  7. V. Cardoso, E. Franzin, P. Pani, Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016)

    Article  ADS  Google Scholar 

  8. V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela, P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D 94, 084031 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the abyss: tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D 96, 082004 (2017)

    Article  ADS  Google Scholar 

  10. R.S. Conklin, B. Holdom, J. Ren, Gravitational wave echoes through new windows. Phys. Rev. D 98, 044021 (2018)

    Article  ADS  Google Scholar 

  11. G. Ashton, O. Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G.D. Meadors, A.B. Nielsen, A. Nitz, J. Wester- weck, Comments on: “Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons” (2016). arXiv:1612.05625

    Google Scholar 

  12. J. Westerweck, A. Nielsen, O. Fischer-Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G. Meadors, A.H. Nitz, Low significance of evidence for black hole echoes in gravitational wave data (2017). arXiv:1712.09966

    Google Scholar 

  13. T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  14. F.J. Zerilli, Effective potential for even-parity regge-wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)

    Article  ADS  Google Scholar 

  15. K.S. Thorne, A. Campolattaro, Non-radial pulsation of general-relativistic stellar models. I. Analytic analysis for L ≥ 2. ApJ 149, 591 (1967)

    Google Scholar 

  16. K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. H.-P. Nollert, Topical review: quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Class. Quantum Grav. 16, R159–R216 (1999)

    Article  MathSciNet  Google Scholar 

  18. E. Berti, V. Cardoso, A.O. Starinets, Topical Review: quasinormal modes of black holes and black branes. Class. Quantum Grav. 26, 163001 (2009)

    Article  ADS  Google Scholar 

  19. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  20. B.M. Karnakov, V.P. Krainov, WKB Approximation in Atomic Physics (Springer, Berlin, 2013)

    Book  Google Scholar 

  21. H.-J. Blome, B. Mashhoon, Quasi-normal oscillations of a schwarzschild black hole. Phys. Lett. A 100, 231–234 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Ferrari, B. Mashhoon, Oscillations of a black hole. Phys. Rev. Lett. 52, 1361–1364 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295–304 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. S.H. Völkel, K.D. Kokkotas, On the inverse spectrum problem of neutron stars. Class. Quantum Grav. 36(11), 115002 (2019)

    Google Scholar 

  25. S.H. Völkel, K.D. Kokkotas, Wormhole potentials and throats from quasi-normal modes. Class. Quantum Grav. 35, 105018 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Chandrasekhar, V. Ferrari, On the non-radial oscillations of a star. III - a reconsideration of the axial modes. Proc. Royal Soc. Lond. Ser. A 434, 449–457 (1991)

    Article  ADS  Google Scholar 

  27. K.D. Kokkotas, Axial modes for relativistic stars. Mon. Not. R. Astron. Soc. 268, 1015 (1994)

    Article  ADS  Google Scholar 

  28. K.D. Kokkotas, Pulsating relativistic stars, Relativistic gravitation and gravitational radiation, in Proceedings, School of Physics, Les Houches, France (1995), pp. 89–102

    Google Scholar 

  29. K. Tominaga, M. Saijo, K. Maeda, Gravitational waves from a test particle scattered by a neutron star: axial mode case. Phys. Rev. D 60, 024004 (1999)

    Article  ADS  Google Scholar 

  30. V. Ferrari, K.D. Kokkotas, Scattering of particles by neutron stars: time evolutions for axial perturbations. Phys. Rev. D 62, 107504 (2000)

    Article  ADS  Google Scholar 

  31. V. Cardoso, P. Pani, Tests for the existence of horizons through gravitational wave echoes. Nat. Astron. 1, 586–591 (2017)

    Article  ADS  Google Scholar 

  32. V.S. Popov, V.D. Mur, A.V. Sergeev, Quantization rules for quasistationary states. Phys. Lett. A 157, 185–191 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  33. S.H. Völkel, K.D. Kokkotas, A semi-analytic study of axial perturbations of ultra compact stars. Class. Quantum Grav. 34, 125006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)

    Article  MathSciNet  Google Scholar 

  35. C. Gordon, D. Webb, S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 11–22 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.A. Wheeler, Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton Series in Physics (Princeton University Press, Princeton, 2015), pp. 351–422

    Google Scholar 

  37. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. Texts and Monographs in Physics (Springer, New York, 1989)

    Google Scholar 

  38. J.C. Lazenby, D.J. Griffiths, Classical inverse scattering in one dimension. Am. J. Phys. 48, 432–436 (1980)

    Article  ADS  Google Scholar 

  39. S.C. Gandhi, C.J. Efthimiou, Inversion of Gamow’s formula and inverse scattering. Am. J. Phys. 74, 638–643 (2006)

    Article  ADS  Google Scholar 

  40. D. Bonatsos, C. Daskaloyannis, K. Kokkotas, WKB equivalent potentials for the q-deformed harmonic oscillator. J. Phys. A 24, 795–801 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Bonatsos, C. Daskaloyannis, K. Kokkotas, WKB equivalent potentials for q-deformed harmonic and anharmonic oscillators. J. Math. Phys. 33, 2958–2965 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Bonatsos, C. Daskaloyannis, K. Kokkotas, WKB equivalent potentials for q-deformed anharmonic oscillators. Chem. Phys. Lett. 193, 191–196 (1992)

    Article  ADS  Google Scholar 

  43. S.H. Völkel, K.D. Kokkotas, Ultra compact stars: reconstructing the perturbation potential. Class. Quantum Grav. 34, 175015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. R.A. Konoplya, How to tell the shape of a wormhole by its quasinormal modes. Phys. Lett. B 784, 43–49 (2018)

    Article  ADS  Google Scholar 

  45. S.H. Völkel, Inverse spectrum problem for quasi-stationary states. J. Phys. Commun. 2, 025029 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

SV wants to thank the organizers and all participants of Domoschool 2018 for creating an unforgettable week of learning and cultural exchange in the beautiful town of Domodossola. The authors also want to thank Daniela D. Doneva for useful discussions. SV is indebted to the Baden-Württemberg Stiftung for the financial support of this research project by the Eliteprogramme for Postdocs and receives the PhD scholarship Landesgraduiertenförderung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian H. Völkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Völkel, S.H., Kokkotas, K.D. (2019). Hearing the Nature of Compact Objects. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_12

Download citation

Publish with us

Policies and ethics