Skip to main content

Crystal Spacetimes with Discrete Translational Symmetry

  • Chapter
  • First Online:
  • 871 Accesses

Abstract

The aim of this work is to construct exact solutions of Einstein–Maxwell(-dilaton) equations possessing a discrete translational symmetry. We present two approaches to the problem. The first one is to solve Einstein–Maxwell equations in 4D, the second one relies on dimensional reduction from 5D. We examine the geometry of the solutions, their horizons and singularities and compare them.

Grants GAUK 80918, GACR 14-37086G.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term extremal refers to the fact that the charges of the black holes are equal to their masses, rendering their horizons degenerate.

  2. 2.

    The number of space-like dimensions is denoted as n.

  3. 3.

    Latin indices range over 1, …, n and label only spatial components, Greek indices are 0, …, n.

  4. 4.

    The Laplacian for the spatial metric h is defined as \(\Delta _h f \equiv h^{ij} \nabla _{i} \nabla _{j} f = \frac {1}{\sqrt {\mathfrak {h}}} \left (\sqrt {\mathfrak {h}} h^{ij} f_{i}\right )_{,j}\).

  5. 5.

    Let \(f_k(x): I \rightarrow \mathbb {C}\) be functions and assume that there exist a k such that \(\left |{f_k(x) - f(x)}\right | \leq a_k\) for ∀x ∈ I and a k → 0 when k →. Then \(f_k(x) \rightrightarrows f(x)\) in I.

  6. 6.

    Leibniz theorem: Let \(f_k(x): I \rightarrow \mathbb {C}\) such that \(f_k \rightrightarrows 0\) in I and let f k(x) be monotonous for ∀x ∈ I. Then \(\sum (-1)^k f_k(x)\) converges uniformly in I.

  7. 7.

    Weierstrass M-test: Let \(f_k(x): I \rightarrow \mathbb {C}\) be functions and assume that there exist a k such that \(\left |{f_k(x)}\right | \leq a_k\) and \(\left |{\sum a_k}\right | < \infty \). Then \(\sum f_k(x)\) converges absolutely uniformly in I.

  8. 8.

    The Hurwitz–Lerch transcendent is defined as \(\Phi (z,s,a)=\sum _{k=0}^{\infty } z^k(a+k)^{-s}\).

  9. 9.

    The Hurwitz zeta function, \(\zeta _s(a)=\sum _{k=0}^{\infty } (a+k)^{-s}\), has singularities at a = −n for non-negative integers n.

  10. 10.

    Here \(\bar {\zeta }(s)=\sum _{k=1}^{\infty } k^{-s}\) is the Riemann zeta function.

  11. 11.

    Moore–Osgood: Let f, f n be defined in a punctured neighbourhood of x 0. Let \(f_n \rightrightarrows f\) in I and \(c_n = \lim _{x \rightarrow x_0} f_n(x)\) be finite. Then \(\lim _{x \rightarrow x_0} \lim _{n \rightarrow \infty } f_n(x) = \lim _{n \rightarrow \infty } \lim _{x \rightarrow x_0} f_n(x)\).

  12. 12.

    Equations of motion for electrogeodesics are derived from the Lagrangian \(\mathcal {L} = \frac {1}{2}g_{\mu \nu }\dot {x}^{\mu }\dot {x}^{\nu }+qA_{\mu }\dot {x}^{\mu }\), the dot denotes derivative with respect to affine parameter τ.

  13. 13.

    Formally \(\nabla \varphi _{\neg 0} = (\nabla f) \sum f^{-1} \varphi _n - f \sum \varphi _n f^{-2} \nabla f + f \sum f^{-1} \nabla \varphi _n\). Under suitable assumptions the first two terms cancel each other.

  14. 14.

    Harmonic number \(H(z) = \gamma _e + \frac {\mathrm {d}{(\ln \Gamma (z+1))}}{\mathrm {d}{z}}\), where γ e is the Euler gamma constant and Γ is the Euler gamma function.

  15. 15.

    Capital Latin indices range over 0, …, D + 1, Greek indices are 0, …, D.

  16. 16.

    denotes the d’Alembertian of a Lorentzian metric g, which is defined as .

References

  1. S.D. Majumdar, A class of exact solutions of Einstein’s field equations. Phys. Rev. 72, 390–398 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Papaetrou, A static solution of the equations of the gravitational field for an arbitrary charge distribution. Proc. R. Irish Acad. (Sect. A) A51, 191–204 (1947)

    MathSciNet  Google Scholar 

  3. J.B. Hartle, S.W. Hawking, Solutions of the Einstein-Maxwell equations with many black holes. Commun. Math. Phys. 26(2), 87–101 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Ryzner, M. Žofka, Electrogeodesics in the di-hole Majumdar-Papapetrou spacetime. Class. Quant. Gravit. 32(20), 205010 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Ryzner, M. Žofka, Extremally charged line. Class. Quant. Gravit. 33(24), 245005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.P.S. Lemos, V.T. Zanchin, Class of exact solutions of Einstein’s field equations in higher dimensional spacetimes, d ≥ 4: Majumdar-Papapetrou solutions. Phys. Rev. D 71, 124021 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. D.L. Welch, On the smoothness of the horizons of multi-black-hole solutions. Phys. Rev. D 52, 985–991 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. V.P. Frolov, A. Zelnikov, Scalar and electromagnetic fields of static sources in higher dimensional Majumdar-Papapetrou spacetimes. Phys. Rev. D 85, 064032 (2012)

    Article  ADS  Google Scholar 

  9. J.P.S. Lemos, V.T. Zanchin, Rotating charged black strings and three-dimensional black holes. Phys. Rev. D 54, 3840–3853 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Deszcz, M. Głogowska, J. Jełowicki, G. Zafindratafa, Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods Mod. Phys. 13(1), 1550135 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.R. was supported by grant No. 80918 of Charles University Grant Agency. M.Ž. Acknowledges support by GACR 17-13525S.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryzner, J., Žofka, M. (2019). Crystal Spacetimes with Discrete Translational Symmetry. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_10

Download citation

Publish with us

Policies and ethics