Skip to main content

Four Lectures on Asymptotically Flat Riemannian Manifolds

  • Chapter
  • First Online:
Einstein Equations: Physical and Mathematical Aspects of General Relativity (DOMOSCHOOL 2018)

Abstract

After an introduction to the mathematical description of isolated gravitating systems, we present a proof of the positive mass theorem relying on the compactification trick that lies behind the argument proposed by Schoen and Yau in 2017 to handle the possible occurrence of high-dimensional singularities of minimizing cycles. From there, we describe some rigidity phenomena involving Riemannian manifolds of non-negative scalar curvature, and survey various recent results concerning the large-scale geometric structure of asymptotically flat spaces. In the last section, we outline the construction, due to Schoen and the author, of localized solutions of the Einstein constraints and discuss its implications both on the physical and the geometric side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of clarity, we shall always tacitly assume the word smooth to mean C and leave the straightforward modifications needed to handle the case of finite regularity, as encoded by functional spaces like C k, α or W k, p, to the reader. Such spaces will be relevant at a later stage and we will recall their definitions at due course.

  2. 2.

    We refer to compactness of currents with respect to the weak topology, namely with respect to the canonical duality with spaces of differential forms.

  3. 3.

    By its very definition, considering the special case of ω 1 ∧… ∧ ω n−1 as a test form.

  4. 4.

    In fact, it is a standard result in geometric topology that any smooth map F : S h → S k has degree zero if h < k where S h (resp. S k) is a genus h (resp. k) surface.

  5. 5.

    A smooth, embedded, hypersurface is called area-minimizing if it is a local minimum for the area functional under smooth perturbations. In particular, an area-minimizing hypersurface is a stable, minimal hypersurface.

  6. 6.

    Recall from Definition 3.3 that we are assuming, for the sake of simplicity, to only deal with asymptotically flat manifolds with one end. More generally, one will have limr→+ Θ(r) ≥ 1 and thus Theorem 4.5 still holds true, with the very same proof.

References

  1. M. Abate, F. Tovena, Curves and Surfaces (Springer, Milan, 2012)

    Book  MATH  Google Scholar 

  2. L. Ambrozio, Rigidity of area-minimizing free boundary surfaces in mean convex three-manifolds. J. Geom. Anal. 25(2), 1001–1017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Arnowitt, S. Deser, C.W. Misner, Dynamical structure and definition of energy in general relativity. Phys. Rev. 2(116), 1322–1330 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Ashtekar, R. Hansen, A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19(7), 1542–1566 (1978)

    Google Scholar 

  5. R. Bartnik, The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Beig, P.T. Chruściel, Shielding linearized gravity. Phys. Rev. D 95(6), 064063, 9pp. (2017)

    Google Scholar 

  7. L. Bieri, An extension of the stability theorem of the Minkowski space in general relativity. J. Differ. Geom. 86(1), 17–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Bray, S. Brendle, M. Eichmair, A. Neves, Area-minimizing projective planes in 3-manifolds. Commun. Pure Appl. Math. 63(9), 1237–1247 (2010)

    MathSciNet  MATH  Google Scholar 

  9. H. Bray, S. Brendle, A. Neves, Rigidity of area-minimizing two-spheres in three-manifolds. Commun. Anal. Geom. 18(4), 821–830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Brendle, Rigidity Phenomena Involving Scalar Curvature. Surveys in Differential Geometry, vol. 17 (International Press, Boston, 2012), pp. 179–202

    Google Scholar 

  11. S. Brendle, M. Eichmair, Large outlying stable constant mean curvature spheres in initial data sets. Invent. Math. 197(3), 663–682 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. Bunting, A. Masood-ul-Alam, Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19(2), 147–154 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Cai, G. Galloway, Rigidity of area minimizing tori in 3-manifolds of nonnegative scalar curvature. Commun. Anal. Geom. 8(3), 565–573 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Carlotto, Rigidity of stable minimal hypersurfaces in asymptotically flat spaces. Calc. Var. Partial Differ. Equ. 55(3), 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Carlotto, C. De Lellis, Min-max embedded geodesics lines in asymptotically conical surfaces. J. Differ. Geom. 112(3), 411–445 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Carlotto, R. Schoen, Localizing solutions of the Einstein constraint equations. Invent. Math. 205(3), 559–615 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Carlotto, O. Chodosh, M. Eichmair, Effective versions of the positive mass theorem.Invent. Math. 206(3), 975–1016 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. O. Chodosh, M. Eichmair, Global uniqueness of large stable CMC surfaces in asymptotically flat 3-manifolds (arXiv:1703.02494, preprint)

    Google Scholar 

  19. O. Chodosh, M. Eichmair, On far-outlying CMC spheres in asymptotically flat Riemannian 3-manifolds (arXiv:1703.09557, preprint)

    Google Scholar 

  20. O. Chodosh, M. Eichmair, V. Moraru, A splitting theorem for scalar curvature. Commun. Pure Appl. Math. 72(6), 1231–1242 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. O. Chodosh, M. Eichmair, Y. Shi, H. Yu, Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds (arXiv:1606.04626, preprint)

    Google Scholar 

  22. Y. Choquet-Bruhat, R. Geroch, Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P. Chruściel, Boundary Conditions at Spatial Infinity from a Hamiltonian Point of View. Topological Properties and Global Structure of Space-Time (Erice, 1985). NATO Advanced Science Institutes Series B: Physics, vol. 138 (Plenum, New York, 1986)

    Google Scholar 

  24. P.T. Chruściel, Anti-gravity à la Carlotto-Schoen. Séminaire Bourbaki 1120, 1–24 (2016)

    Google Scholar 

  25. P.T. Chruściel, Lectures on Energy in General Relativity (preprint)

    Google Scholar 

  26. P.T. Chruściel, E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) (94), vi+103pp. (2003)

    Google Scholar 

  27. P.T. Chruściel, E. Delay, Exotic hyperbolic gluings. J. Differ. Geom. 108(2), 243–293 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. P.T. Chruściel, J. Isenberg, D. Pollack, Initial data engineering. Commun. Math. Phys. 257(1), 29–42 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. P.T. Chruściel, J. Corvino, J. Isenberg, Construction of N-body initial data sets in general relativity. Commun. Math. Phys. 304(3), 637–647 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. P.T. Chruściel, J. Corvino, J. Isenberg, Construction of N-Body Time-Symmetric Initial Data Sets in General Relativity. Complex Analysis and Dynamical Systems IV, Part 2, Contemporary Mathematics, vol. 554 (American Mathematical Society, Providence, 2011), pp. 83–92

    Google Scholar 

  31. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. Corvino, R. Schoen, On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Eichmair, J. Metzger, Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94(1), 159–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Einstein, Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften (1915), pp. 844–847

    Google Scholar 

  35. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    Article  MATH  Google Scholar 

  36. Y.-S. Fan, Y. Shi, L.-F. Tam, Large-sphere and small-sphere limits of the Brown-York mass. Commun. Anal. Geom. 17(1), 37–72 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York 1969), xiv+676pp.

    Google Scholar 

  38. D. Fischer-Colbrie, R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Commun. Pure Appl. Math. 33(2), 199–211 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 2nd edn. (Springer, Berlin, 1990), xvi+322pp.

    Google Scholar 

  41. G. Galloway, P. Miao, Variational and rigidity properties of static potentials. Commun. Anal. Geom. 25(1), 163–183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Gromov, Metric inequalities with scalar curvature. Geom. Funct. Anal. 28(3), 645–726 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Guillemin, A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, 1974), xvi+222pp.

    Google Scholar 

  44. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edn. Springer Study Edition (Springer, Berlin, 1990), xii+440pp.

    Google Scholar 

  45. L.-H. Huang, Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300(2), 331–373 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. G. Huisken, S.-T. Yau, Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124(1–3), 281–311 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. W. Israel, Black Hole Uniqueness and the Inner Horizon Stability Problem. The Future of the Theoretical Physics and Cosmology (Cambridge, 2002) (Cambridge University Press, Cambridge, 2003), pp. 205–216

    Google Scholar 

  48. J. Joudioux, Gluing for the constraints for higher spin fields. J. Math. Phys. 58(11), 111513, 10pp. (2017)

    Google Scholar 

  49. S. Lang, Algebra. Revised Third Edition. Graduate Texts in Mathematics, vol. 211 (Springer, New York, 2002), xvi+914pp.

    Google Scholar 

  50. S. Ma, Uniqueness of the foliation of constant mean curvature spheres in asymptotically flat 3-manifolds. Pac. J. Math. 252(1), 145–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. F. Marques, A. Neves, Rigidity of min-max minimal spheres in three-manifolds. Duke Math. J. 161(14), 2725–2752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Máximo, I. Nunes, Hawking mass and local rigidity of minimal two-spheres in three-manifolds. Commun. Anal. Geom. 21(2), 409–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Meyers, An expansion about infinity for solutions of linear elliptic equations. J. Math. Mech. 12(2), 247–264 (1963)

    MathSciNet  MATH  Google Scholar 

  54. P. Miao, Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2002)

    Article  MathSciNet  Google Scholar 

  55. P. Miao, L.-F. Tam, Static potentials on asymptotically flat manifolds. Ann. Henri Poincaré 16(10), 2239–2264 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. P. Miao, L.-F. Tam, Evaluation of the ADM mass and center of mass via the Ricci tensor. Proc. Am. Math. Soc. 144(2), 753–761 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Micallef, V. Moraru, Splitting of 3-manifolds and rigidity of area-minimising surfaces. Proc. Am. Math. Soc. 143(7), 2865–2872 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Müller zum Hagen, D. Robinson, H. Seifert, Black holes in static vacuum space-times. Gen. Relativ. Gravit. 4(8), 53–78 (1973)

    Google Scholar 

  59. C. Nerz, Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry. Calc. Var. Partial Differ. Equ. 54(2), 1911–1946 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. I. Nunes, Rigidity of area-minimizing hyperbolic surfaces in three-manifolds. J. Geom. Anal. 23(3), 1290–1302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Robinson, A simple proof of the generalization of Israel’s theorem. Gen. Relativ. Gravit. 8(8), 695–698 (1977)

    Article  ADS  MATH  Google Scholar 

  62. J. Sbierski, On the existence of a maximal Cauchy development for the Einstein equations: a dezornification. Ann. Henri Poincaré 17(2), 301–329 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. R. Schoen, S.T. Yau, Positive scalar curvature and minimal hypersurface singularities (arXiv: 1704.05490, preprint)

    Google Scholar 

  65. R. Wald, General Relativity (University of Chicago Press, Chicago, 1984), xiii+491pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Carlotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlotto, A. (2019). Four Lectures on Asymptotically Flat Riemannian Manifolds. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_1

Download citation

Publish with us

Policies and ethics