Skip to main content

Image Enhancement with Applications in Biomedical Processing

  • Conference paper
  • First Online:
Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Abstract

The images obtained by X-Ray or computed tomography (CT) may be contaminated with different kinds of noise or show lack of sharpness, too low or high intensity and poor contrast. Such image deficiencies can be induced by adverse physical conditions and by the transmission properties of imaging devices. A number of enhancement techniques in image processing may improve the quality of the image. These include: point arithmetic operations, smoothing and sharpening filters and histogram modifications. The choice of the technique, however, depends on the type of image deficiency. In this paper, the primary aim is to propose an efficient image enhancement method based on nonparametric estimation so as to enable medical images to have better contrast. To evaluate the method performance, X-Ray and CT images have been studied. Experimental results verify that applying this approach can engender good image enhancement performance when compared with classical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charytanowicz, M., Kulczycki, P., Łukasik S., Kowalski, P.A.: Image enhancement with applications in biomedical processing. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 54. AGH-UST Press, Cracow (2018)

    Google Scholar 

  2. Charytanowicz, M., Kulczycki, P.: An image analysis algorithm for soil structure identification. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrożny, S. (eds.) Information Technologies in Biomedicine, pp. 681–692. Springer, Cham (2014)

    Google Scholar 

  3. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of X-ray images. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, pp. 15–24. Springer, Heidelberg (2010)

    Google Scholar 

  4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2007)

    Google Scholar 

  5. Kulczycki, P.: Estymatory jadrowe w analizie systemowej. WNT, Warszawa (2005)

    Google Scholar 

  6. Kulczycki, P.: Kernel estimators in industrial applications. In: Prasad, B. (ed.) Soft Computing Applications in Industry. Springer, Berlin (2008)

    Google Scholar 

  7. Kulczycki, P., Charytanowicz, M.: A complete gradient clustering algorithm formed with kernel estimators. Int. J. Appl. Math. Comput. Sci. 20, 123–134 (2010)

    Article  MathSciNet  Google Scholar 

  8. Kulczycki, P., Charytanowicz, M., Kowalski, P.A., Łukasik, S.: The complete gradient clustering algorithm: properties in practical applications. J. Appl. Stat. 39, 1211–1224 (2012)

    Article  MathSciNet  Google Scholar 

  9. Pereira, O., Torre, E., Garcés, E., Rodriguez, R.: Edge detection based on kernel density estimation. In: Proceedings of the 2017 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2017, pp. 1–24. CSREA Press (2017)

    Google Scholar 

  10. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    Book  Google Scholar 

  11. Smolka, B., Budzan, S., Lukač, R.: Nonparametric design of impulsive noise removal in colour images. J. Med. Inform. Technol. 7, 3–14 (2004)

    Google Scholar 

  12. Sprawls, P.: Optimizing medical image contrast, detail and noise in the digital era. Med. Phys. Int. J. 2, 128–133 (2014)

    Google Scholar 

  13. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1994)

    Book  Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  15. Wojnar, L., Majorek, M.: Komputerowa analiza obrazu. Fotobit Design, Warszawa (1994)

    Google Scholar 

  16. Yang, Y.-Q., Zhang, J.-S., Huang, X.-F.: Adaptive image enhancement algorithm combining kernel regression and local homogeneity. Math. Probl. Eng. 2010, 1–14 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Charytanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charytanowicz, M., Kulczycki, P., Łukasik, S., Kowalski, P.A. (2020). Image Enhancement with Applications in Biomedical Processing. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_8

Download citation

Publish with us

Policies and ethics