Skip to main content

Probability Measures and Projections on Quantum Logics

  • Conference paper
  • First Online:
Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Abstract

The present paper is devoted to modelling of a probability measure of logical connectives on a quantum logic (QL), via a G-map, which is a special map on it. We follow the work in which the probability of logical conjunction, disjunction and symmetric difference and their negations for non-compatible propositions are studied.

We study such a G-map on quantum logics, which is a probability measure of a projection and show, that unlike classical (Boolean) logic, probability measure of projections on a quantum logic are not necessarilly pure projections.

We compare properties of a G-map on QLs with properties of a probability measure related to logical connectives on a Boolean algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is easy to see that if \(a\leftrightarrow b\), then \(q_p(a,b)=m_p(a)+m_p(b)-m_p(a\wedge b)=m_p(a\vee b)\) which explains its name.

  2. 2.

    If \(a\leftrightarrow b\), then \(d(a,b)= m_d(a\bigtriangleup b)=m_d(a\wedge b')+m_d(a'\wedge b)\), where \(m_d\) is a state induced by d.

References

  1. Nánásiová, O., Čerňanová, V., Valášková, Ľ.: Probability measures and projections on quantum logics. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 78. AGH-UST Press, Cracow (2018)

    Google Scholar 

  2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936). second series

    Article  MathSciNet  Google Scholar 

  3. Bunce, L.J., Navara, M., Pták, P., Maitland Wright, D.: Quantum logics with Jauch-Piron states. Q. J. Math. 36(3), 261–271 (1985)

    Article  MathSciNet  Google Scholar 

  4. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Springer, Dordrecht (2000). ISBN 978-94-017-2422-7

    Book  Google Scholar 

  5. Dvurečenskij, A., Pulmannová, S.: Connection between joint distribution and compatibility. Rep. Math. Phys. 19(3), 349–359 (1984)

    Article  MathSciNet  Google Scholar 

  6. Sozzo, S.: Conjunction and negation of natural concepts: a quantum-theoretic modeling S Sozzo. J. Math. Psychol. 66, 83–102 (2015)

    Article  MathSciNet  Google Scholar 

  7. Herman, L., Marsden, L., Piziak, R.: Implication connectives in orthomodula lattices. Notre Dame J. Formal Logic XVI(3), 305–326 (1975)

    Article  Google Scholar 

  8. Jauch, J.M., Piron, C.: On the structure of quantal proposition systems. Helv. Phys. Acta 42, 842–848 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Kalina, M., Nánásiová, O.: Calculus for non-compatible observables, construction through conditional states. Int. J. Theor. Phys. 54(2), 506–518 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Khrennikov, A.Y.: EPR-Bohm experiment and Bell’s inequality: quantum physics meets probability theory. TMF 157(1), 99–115 (2008). (Mi tmf6266)

    Article  Google Scholar 

  11. Khrennikov, A.: Violation of Bell’s inequality and non-Kolmogorovness. In: Accardi, L., et al. (eds.) Foundations of Probability and Physics-5. American Institute of Physics, Mellville (2009)

    Google Scholar 

  12. Nánásiová, O.: Principle conditionig. Int. J. Theor. Phys. 43(7–8), 1757–1768 (2004)

    Article  Google Scholar 

  13. Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Int. J. Theor. Phys. 42(9), 1889–1903 (2003)

    Article  MathSciNet  Google Scholar 

  14. Nánásiová, O., Drobná, E., Valášková, Ľ.: Quantum logics and bivariable functions. Kybernetika 46(6), 982–995 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Nánásiová, O., Khrennikov, A.: Representation theorem of observables on a quantum system. Int. J. Theor. Phys. 45(3), 469–482 (2006)

    Article  MathSciNet  Google Scholar 

  16. Nánásiová, O., Pykacz, J.: Modelling of uncertainty and bi-variable maps. J. Electr. Eng. 67(3), 169–176 (2016)

    Google Scholar 

  17. Nánásiová, O., Valášková, Ľ.: Maps on a quantum logic. Soft Comput. 14(10), 1047–1052 (2010)

    Article  Google Scholar 

  18. Nánásiová, O., Valášková, Ľ.: Marginality and triangle inequality. Int. J. Theor. Phys. 49(12), 3199–3208 (2010)

    Article  MathSciNet  Google Scholar 

  19. Pavičić, M., Megill, N.D.: Is quantum logic a logic? In: Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 23–47. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  20. Pavičić, M.: Classical logic and quantum logic with multiple and common lattice models. Hindawi Publishing Corporation Advances in Mathematical Physics volume 2016, Article ID 6830685, 12 pages (2016)

    Google Scholar 

  21. Pavičić, M.: Exhaustive generation of orthomodular lattices with exactly one nonquantum state. Rep. Math. Phys. 64, 417–428 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Springer, Netherlands (1991)

    MATH  Google Scholar 

  23. Pitovsky, I.: Quantum Probability-Quantum Logic. Springer, Berlin (1989)

    Google Scholar 

  24. Pykacz, J., Frackiewicz, P.: The problem of conjunction and disjunction in quantum logics. Int. J. Theor. Phys. 56(12), 3963–3970 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pykacz, J., Valášková, L., Nánásiová, O.: Bell-type inequalities for bivariate maps on orthomodular lattices. Found. Phys. 45(8), 900–913 (2015)

    Article  MathSciNet  Google Scholar 

  26. Sergioli, G., Bosyk, G.M., Santucci, E., Giuntini, R.: A quantum-inspired version of the classification problem. Int. J. Theor. Phys. 56, 3880–3888 (2017). https://doi.org/10.1007/s10773-017-3371-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author (O. Nánásiová) would like to thank for the support of the VEGA grant agency by means of grant VEGA 1/0710/15 and VEGA 1/0159/17 and the author (L. Valášková) would like to thank for the support of VEGA 1/0420/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oľga Nánásiová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nánásiová, O., Čerňanová, V., Valášková, Ľ. (2020). Probability Measures and Projections on Quantum Logics. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_25

Download citation

Publish with us

Policies and ethics