Skip to main content

2D-Raman Correlation Spectroscopy Recognizes the Interaction at the Carbon Coating and Albumin Interface

  • Conference paper
  • First Online:
Book cover Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Abstract

Carbon materials open new perspectives in biomedical research, due to their inert nature and interesting properties. For biomaterials the essential attribute is their biocompatibility, which refers to the interaction with host cells and body fluids, respectively. The aim of our work was to analyze two types of carbon layers differing primarily in topography, and modeling their interactions with blood plasma proteins. The first coating was a layer formed of pyrolytic carbon C (CVD) and the second was constructed of multi-walled carbon nanotubes obtained by electrophoretic deposition (EPD), both set on a Ti support. The results of the performed complex studies of the two types of model carbon layers exhibit significant dissimilarities regarding their interaction with chosen blood proteins, and the difference is related to the origin of a protein: whether it is animal or human. Wettability data, nano scratch tests were not sufficient to explain the material properties. In contrast, Raman microspectroscopy thoroughly decodes the phenomena occurring at the carbon structures in contact with the selected blood proteins interface. The 2D correlation method selects the most intense interaction and points out the different mechanism of interactions of proteins with the nanocarbon surfaces and differentiation due to the nature of the protein and its source: animal or human. The 2D-correlation of the Raman spectra of the MWCNT layer + HSA interphase confirms an increase in albumin β-conformation. The presented results explain the unique properties of the C-layers (CVD) in contact with human albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kołodziej, A., Wesełucha-Birczyńska, A., Moskal, P., Stodolak-Zych, E., Dużyja, M., Długoń, E., Sacharz, J., Błażewicz, M.: 2D-Raman correlation spectroscopy recognizes the interaction at the carbon coating and albumin interface. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 3. AGH-UST Press, Cracow (2018)

    Google Scholar 

  2. Cademartiri, L., Ozin, G.A.: Concepts of Nanochemistry. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  3. Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomedicine 3, 20–31 (2007)

    Article  Google Scholar 

  4. Lee, H., Kim, G.: Three-dimensional plotted PCL/β-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. J. Mater. Chem. 21, 6305–6312 (2011)

    Article  Google Scholar 

  5. Zhang, L., Webster, T.J.: Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)

    Article  Google Scholar 

  6. Lee, D.-E., Koo, H., Sun, I.-C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012)

    Article  Google Scholar 

  7. da Rocha, E.L., Porto, L.M., Rambo, C.R.: Nanotechnology meets 3D in vitro models: tissue engineered tumors and cancer therapies. Mater. Sci. Eng., C 34, 270–279 (2014)

    Article  Google Scholar 

  8. Chen, A., Chatterjee, S.: Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013)

    Article  Google Scholar 

  9. Dash, T.K., Konkimalla, V.B.: Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158, 15–33 (2012)

    Article  Google Scholar 

  10. Parikh, R., Dalwadi, S.: Preparation and characterization of controlled release poly-ɛ-caprolactone microparticles of isoniazid for drug delivery through pulmonary route. Powder Technol. 264, 158–165 (2014)

    Article  Google Scholar 

  11. Shen, Y. (ed.): Functional Polymers for Nanomedicine. RSC Publishing, Cambridge (2013)

    Google Scholar 

  12. Chen, L., Han, D., Jiang, L.: On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids Surf. B 85, 2–7 (2011)

    Article  Google Scholar 

  13. Ritchie, R.O.: Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in “ceramic” heart valve prostheses. J. Heart Valve Dis. 5(1), 9–31 (1996)

    MathSciNet  Google Scholar 

  14. Cao, H.: Mechanical performance of pyrolytic carbon in prosthetic heart valve applications. J. Heart Valve Dis. 5(1), 32–49 (1996)

    MathSciNet  Google Scholar 

  15. Scholz, M.-S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., Gilbert, M.E., Muflahi, S.A., Pernice, M.F., Rae, S.I., Trevarthen, J.A., White, S.C., Weaver, P.M., Bond, I.P.: The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos. Sci. Technol. 71, 1791–1803 (2011)

    Article  Google Scholar 

  16. Bareket-Keren, L., Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 1–16 (2012)

    Google Scholar 

  17. Hwang, J.Y., Shin, U.S., Jang, W.C., Hyun, J.K., Wall, I.B., Kim, H.W.: Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale 5, 487–497 (2013)

    Article  Google Scholar 

  18. Silva, G.A.: Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7, 65–74 (2006)

    Article  MathSciNet  Google Scholar 

  19. Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B.: Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2012)

    Article  Google Scholar 

  20. Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J.A.: Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 26, 39–47 (2008)

    Article  Google Scholar 

  21. Wesełucha-Birczyńska, A., Frączek-Szczypta, A., Długoń, E., Paciorek, K., Bajowska, A., Kościelna, A., Błażewicz, M.: Application of Raman spectroscopy to study of the polymer foams modified in the volume and on the surface by carbon nanotubes. Vib. Spec. 72, 50–56 (2014)

    Article  Google Scholar 

  22. Wesełucha-Birczyńska, A., Swiętek, M., Sołtysiak, E., Galiński, P., Płachta, Ł., Piekara, K., Błażewicz, M.: Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 140, 2311–2320 (2015)

    Article  Google Scholar 

  23. Poncin-Epaillard, F., Vrlinic, T., Debarnot, D., Mozetic, M., Coudreuse, A., Legeay, G., El Moualij, B., Zorzi, W.: Surface treatment of polymeric materials controlling the adhesion of biomolecules. J. Funct. Biomater. 3, 528–543 (2012)

    Article  Google Scholar 

  24. Fraczek-Szczypta, A., Długon, E., Wesełucha-Birczyńska, A., Nocuń, M., Błażewicz, M.: Multi walled carbon nanotubes deposited on metal substrate using EPD technique: a spectroscopic study. J. Mol. Struct. 1040, 238–245 (2013)

    Article  Google Scholar 

  25. Benko, A., Przekora, A., Wesełucha-Birczyńska, A., Nocuń, M., Ginalska, G., Błażewicz, M.: Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization. Appl. Phys. A 122, 1–13 (2016)

    Article  Google Scholar 

  26. Wesełucha-Birczyńska, A., Stodolak-Zych, E., Turrell, S., Cios, F., Krzuś, M., Długoń, E., Benko, A., Niemiec, W., Błażewicz, M.: Vibrational spectroscopic analysis of ametal/carbon nanotube coating interface and the effect of its interaction with albumin. Vib. Spectrosc. 85, 185–195 (2016)

    Article  Google Scholar 

  27. Wesełucha-Birczyńska, A., Stodolak-Zych, E., Piś, W., Długoń, E., Benko, A., Błażewicz, M.: A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD): 2D correlation analysis. J. Mol. Struct. 1124, 61–70 (2016)

    Article  Google Scholar 

  28. Vajtai, R. (ed.): Springer Handbook of Nanomaterials. Springer, Heidelberg (2013)

    Google Scholar 

  29. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  Google Scholar 

  30. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  31. Murr, L.E., Guerrero, P.A.: Carbon nanotubes in wood soot. Atmos. Sci. Lett. 7, 93–95 (2006)

    Article  Google Scholar 

  32. Bang, J.J., Guerrero, P.A., Lopez, D.A., Murr, L.E., Esquivel, E.V.: Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams. J. Nanosci. Nanotechnol. 4, 716–718 (2004)

    Article  Google Scholar 

  33. Sinha, N., Yeow, J.T.: Carbon nanotubes for biomedical applications. EEE Trans. Nanobiosci. 4, 180–195 (2005)

    Article  Google Scholar 

  34. Zhang, S. (ed.): Biological and Biomedical Coatings Handbook: Applications. CRC Press, Boca Raton (2011)

    Google Scholar 

  35. Park, S., Hamad-Schifferli, K.: Nanoscale interfaces to biology. Curr. Opin. Chem. Biol. 14, 616–622 (2010)

    Article  Google Scholar 

  36. Cui, H., Sinko, P.J.: The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Front. Mater. Sci. 6, 47–59 (2012)

    Article  Google Scholar 

  37. Washburn, N.R., Yamada, K.M., Simon Jr., C.G., Kennedy, S.B., Amis, E.J.: High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25, 1215–1224 (2004)

    Article  Google Scholar 

  38. Anselme, K.: Osteoblast adhesion on biomaterials. Biomaterials 21, 667–681 (2000)

    Article  Google Scholar 

  39. Schaller, J., Gerber, S., Kämfer, U., Lejon, S., Trachsel, C.: Human Blood Plasma Proteins. Wiley, Chichester (2008)

    Book  Google Scholar 

  40. Noda, I., Ozaki, Y.: Two-dimensional Correlation Spectroscopy e Applications in Vibrational and Optical Spectroscopy. Wiley, Chichester (2004)

    Book  Google Scholar 

  41. Noda, I., Dowrey, A.E., Marcott, C., Story, G.M., Ozaki, Y.: Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 54(7), 236A–248A (2002)

    Article  Google Scholar 

  42. Noda, I.: Generalized two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl. Spectrosc. 47, 1329–1336 (1993)

    Article  Google Scholar 

  43. Shinzawa, H., Awa, K., Ozaki, Y.: Compression induced morphological and molecular structural changes of cellulose tablets probed with near infrared imaging. J. Near Infrared Spectrosc. 19, 15–22 (2011)

    Article  Google Scholar 

  44. Dshige © Shigeaki Morita, Kwansei-Gakuin University (2004–2005)

    Google Scholar 

  45. Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. Lond. A 362, 2477–2512 (2004)

    Article  Google Scholar 

  46. Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2065–2098 (2004)

    Article  Google Scholar 

  47. Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)

    Article  Google Scholar 

  48. Wesełucha-Birczyńska, A., Babeł, K., Jurewicz, K.: Carbonaceous materials for hydrogen storage investigated by 2D Raman correlation spectroscopy. Vib. Spectrosc. 60, 206–211 (2012)

    Article  Google Scholar 

  49. Lewis, J.C., Snell, N.S., Hirschmann, D.J., Fraenkel-Conrat, H.: Amino acid composition of egg proteins. J. Biol. Chem. 186(1), 23–35 (1950)

    Google Scholar 

  50. Tu, A.T.: Raman Spectroscopy in Biology: Principles and Applications. Wiley, New York (1982)

    Google Scholar 

  51. Synytsya, A., Judexová, M., Hrubý, T., Tatarkovič, M., Miškovičová, M., Petruželka, L., Setnička, V.: Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA). Anal. Bioanal. Chem. 405, 5441–5453 (2013)

    Article  Google Scholar 

  52. Anderle, G., Mendelsohn, R.: Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophys. J. 52, 69–74 (1987). https://doi.org/10.1016/S0006-3495(87)83189-2

    Article  Google Scholar 

  53. Lippert, J.L., Tyminski, D., Desmeules, P.J.: Determination of the secondary structure of proteins by laser Raman spectroscopy. J. Am. Chem. Soc. 98, 7075–7080 (1976)

    Article  Google Scholar 

  54. Meloun, B., Morávek, L., Kostka, V.: Complete amino acid sequence of human serum albumin. FEBS Lett. 58, 134–137 (1975)

    Article  Google Scholar 

  55. Zhong, J., Song, L., Meng, J., Gao, B., Chu, W., Xu, H., Luo, Y., Guo, J., Marcelli, A., Xie, S., Wu, Z.: Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47, 967–973 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This project was financed from the National Science Centre (NCN, Poland) granted on the decision number DEC-2013/09/B/ST8/00146 and UMO-2014/13/B/ST8/01195. AK has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Wesełucha-Birczyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kołodziej, A. et al. (2020). 2D-Raman Correlation Spectroscopy Recognizes the Interaction at the Carbon Coating and Albumin Interface. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_22

Download citation

Publish with us

Policies and ethics