Micro-minerals at Optimum Concentrations – Protection Against Diseases



Micro-minerals are as necessary as macro-minerals, but in lower doses, micro-doses. Drinking water may be a substantial source. Goitre is uncommon where iodine (I) is >50 μg/L. Levels of about 1 mg/L of fluoride (F) in drinking water is protective against dental caries, but more than 1.5 mg/L may cause dental stains or in the worst case bone deformations. Low selenium (Se) and molybdenum (Mo) is connected to heart diseases and cancer. Lithium (Li) in drinking water decreases the incidence of violent crimes and suicide. Boron (B, <1 mg/L) and chromium (Cr-III) from drinking water may be beneficial. Copper (Cu) and iron (Fe) are nutrients, but concentrations >1 mg/L may cause diarrhoea and subsequent symptoms. Elevated manganese (Mn) may negatively affect the nervous system.


  1. Aamodt G, Bukholm G, Jahnsen J, Moum B, Vatn MH, and the IBSEN Study Group (2008) The association between water supply and inflammatory bowel disease based. Am J Epidemiol, 168(9):1065–1072Google Scholar
  2. Aastrup M, Thunholm B, Johnson J, Bertills U, Berntell A (1995) The chemistry of ground water. The Swedish bed-rock, SEPA Report 4415Google Scholar
  3. Abumrad NN, Schneider AJ, Stee D, Rogers LS (1981) Amino acid intolerance during prolonged total parental nutrition reversed by molybdate therapy. Am J Clin Nutr 34:2551–2559PubMedCrossRefGoogle Scholar
  4. Adler P, Porcsalmy I (1961) Neuere versuche über den karies-protektiven effect des im Trinkwasser enthaltenen Molybdäns. Arch Oral Biol 4:193–198PubMedCrossRefGoogle Scholar
  5. Alarcon-Herrera MT, Martin-Dominquez I, Trejo-Vazquez R, Rodriquez-Dozal S (2001) Well water fluoride, dental fluorosis, bone fractures in the Guadiana Valley of Mexico. Fluoride 34:139–149Google Scholar
  6. Albert MJ, Mathan VI, Baker SJ (1980) Vitamin B12 synthesis by small intestinal bacteria. Nature 283(5749):781–782PubMedCrossRefGoogle Scholar
  7. Andersen PK, Ersbøll AK (2017) Association of Lithium in drinking water with the incidence of dementia. JAMA Psychiat:E1–E6Google Scholar
  8. Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17(6):548–555PubMedCrossRefGoogle Scholar
  9. Anderson RA (1999) Chromium and diabetes. Nutrition 15:720–722PubMedCrossRefGoogle Scholar
  10. Anke M (2005) Recent progress in exploring the essentiality of the non-metalliic ultratrace element arsenic to the nutrition of animals and mam. Biomed Res Trace Elem 16:188–197Google Scholar
  11. Anke M, Groppel B, Kronemann H (1984) Significance of newer essential trace elements (like Si, Ni, As, Li, V) for the nutrition of man and animals. In: Brätter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology, vol 3. De Gruyter, Berlin, pp 421–464Google Scholar
  12. Anonymous (2005) Position of the American dietetic association: the impact of fluoride on health. J Am Diet Assoc 105(10):1620–1628CrossRefGoogle Scholar
  13. Appel LJ, Frohlich ED, Hall JE et al (2011) The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation 123:1138–1143PubMedCrossRefGoogle Scholar
  14. ATSDR, Agency for Toxic Substances and Disease Registry (2000) Toxicological profile for manganese, US department of health and human, services, public health service. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  15. Banner W Jr, Tong T (1986) Iron poisoning. Pediatr Clin North Am 33(2):393–409PubMedCrossRefGoogle Scholar
  16. Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37(2):265–278PubMedCrossRefGoogle Scholar
  17. Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a briefreview based on results from the EVA study. Biofactors 38(2):139–144PubMedCrossRefGoogle Scholar
  18. Blech MF, Martin C, Pichon M, Borelly J, Hartemann P (1990) The clinical and bacteriological outcome of wounds using different local antisepts. J Orthop Surgery 4:123–129Google Scholar
  19. Bouchard MF, Sauve S, Barbeau B, Legrand M, Brodeur M-E, Bouffard T, Limoges E (2011) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect 119:138–143PubMedCrossRefGoogle Scholar
  20. Bowman BA, Russell RM (2006) Nutrition, vol 1, 9th edn. ILSI Press, Washington, DC, p 526Google Scholar
  21. Broberg K, Concha G, Engstrom K, Lindvall M, Grandér M, Vahter M (2010) Lithium in drinking water and thyroid function. Environ Health Perspect 119(6):827–830PubMedCrossRefGoogle Scholar
  22. Bruvo M, Ekstrand K, Arvin E, Spliid H, Moe D, Kirkeby S, Bardow A (2008) Optimal drinking water composition for caries control in populations. J Dent Res 87(4):340–343PubMedPubMedCentralCrossRefGoogle Scholar
  23. Burrell RJ, Roach WA, Shadwell A (1966) Esophageal cancer in the Bantu of Transkei associated with mineral deficiency in garden plants. J Natl Cancer Inst N36:201–209Google Scholar
  24. Bustos OE, Hartley BR, Catriao GR (2008) Histopathological effects of boron on mouse liver. Int J Morhol 26(1):155–164Google Scholar
  25. Butterwick L, de Oude N, Raymond K (1989) Safety assessment of boron in aquatic and terrestrial environments. Ecotoxicol Environ Saf 7(3):339–371CrossRefGoogle Scholar
  26. Canter PH, Wider B, Ernst E (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology 46(8):1223–1323PubMedCrossRefGoogle Scholar
  27. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167:279–280PubMedCrossRefGoogle Scholar
  28. Cetin I, Nalbantcilar MT, Tosun K, Nazik A (2017) How trace element levels of public drinking water affect body composition in Turkey. Biol Trace Elem Res 175:263–270PubMedCrossRefGoogle Scholar
  29. Chapman PM (2011) SETAC’s Learned Discourses, Golder Associates Ltd., 500-4260 Still Creek Drive, Burnaby, BC V5C 6C6Google Scholar
  30. Chappell WR (1979) Human health effects of molybdenum in drinking water. Cincinnati, O. United States Environmental Protection Agency (EPA-600A-79-006)Google Scholar
  31. Concha G, Broberg K, Grandér M, Cardozo A, Palm B, Vahter M (2010) High-level exposure to lithium, rubidium, cesium, boron and arsenic via drinking water in the Puna region of northern Argentina. Environ Sci Technol 44:6875–6880PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cortes S, Reynaga-Delgado E, Sancha AM, Ferreccio C (2011) Boron exposure assessment using drinking water and urine in the North of Chile. Sci of the Tot Env 410–411:96–101CrossRefGoogle Scholar
  33. Dattilo AM (2003) Chromium in health and disease. Nutr Today 38:121–133CrossRefGoogle Scholar
  34. Davis CJ, Lake-Baakar GV, Grahame-Smith DG (1986) Nausea and vomiting: mechanisms and treatment. Springer, BerlinCrossRefGoogle Scholar
  35. Davison A, Howard G, Stevens M, Callan P, Fewtrell D, Deere D, Bartram J (2005) Managing drinking water quality from catchment to consumer. In: Water safety plans, pp 38–45Google Scholar
  36. Deshmukh US (2010) Effect of physiological doses of oral vitamin B12 on plasma homocysteine – a randomized, placebo-controlled, double-blind trial in India. Eur J Clin Nutr 64(5):495–502PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eckhert CD, Rowe RI (1999) Embryonic dysplasia and adult retinal dystrophy in boron deficient zebra fish. J Trace Elem Exp Med 12:213–219CrossRefGoogle Scholar
  38. EFSA (2005) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of fluoride. EFSA J, 192:1–65. Corrected version published on 7 June 2006Google Scholar
  39. El-Harbawi M, Sabidi AABT, Kamarudin EBT, Hamid ABABD, Harun SB, Nazlan AB (2010) Design of a portable dual proposes water filter system. J Eng Sci Technol 5(2):165–175Google Scholar
  40. ETA (1985) Goitre and iodine deficiency in Europe. Subcommittee for the study of endemic goitre and iodine deficiency of the European thyroid association. Lancet 325(8441):1289–1293Google Scholar
  41. EU (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Communities L 330., 5.12.1998:32–54Google Scholar
  42. Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144CrossRefGoogle Scholar
  43. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484S–1491SPubMedCrossRefPubMedCentralGoogle Scholar
  44. Fallico R, Sciacca S, Bellassai S, Ferrante M (1984) Risultati di un’indagine sulla concentrazione di fluoro nelle acque potabili della provincia di Catania. G Ig Med Prev 25(1):110–115Google Scholar
  45. Fallico R, Ferrante M, Fiore M, Madeddu A, Sciacca S (1998) Epidemiological research into the consequences of vanadium assimilated through diet and of its effect on human health following research carried out on people from the Etna massif. J Prev Med Hyg 39:74–79Google Scholar
  46. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking water, World Health Organization (WHO). IWA Publishing, London-Seattle, pp 97–117Google Scholar
  47. Fieve RR, Meltzer HL (1974) Rubidium salts: toxic effects in humans and clinical effects as an anti-depressant drug. Psychopharmacol Bull, 10:38–50. (In: Current trends in Lithium and Rubidium therapy. Proceedings of an International Symposium on Lithium and Rubidium Therapy held in Venice, 29 September –1st October 1983)Google Scholar
  48. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196PubMedPubMedCentralCrossRefGoogle Scholar
  49. FNB, Food and Nutrition Board (2001) Molybdenum. Dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. In: Panel on micronutrients. Subcommittees on upper reference levels of nutrients and of interpretation and use of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes. National Academy Press. Chapter 11Google Scholar
  50. Fordyce FM, Johnson CC, Navaratna URB, Appleton JD, Dissanayake CB (2000) Selenium and Iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci of The Tot Env 263:127–141CrossRefGoogle Scholar
  51. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 198:351–356PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fort DJ, Stover EL, Strong PL, Murray FJ, Keen CL (1999) Chronic feeding of a low boron diet adversily affects reproduction and development in Xenopus laevis. J Nutr 129:2055–2060PubMedCrossRefPubMedCentralGoogle Scholar
  53. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med 26:235–244CrossRefGoogle Scholar
  54. Freeland-Graves JH, Bales CW, Behmardi F (1987) Manganese requirements of humans. In: Kies C (ed) Nutritional bioavailability of manganese. American Chemical Society, Washington, DC, pp 90–104CrossRefGoogle Scholar
  55. Friberg L, Lener J (1986) Molybdenum. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, vol 2. Elsevier Science Publishers BV, Amsterdam, pp 446–461Google Scholar
  56. Friberg L, Nordberg GF (1986) Handbook of the toxicology of metals, 2nd edn. Elsevier Scieuence Publishers, pp 664–679Google Scholar
  57. FSANZ, Food Standards Australia New Zealand (2008) The 22nd Australian total diet study. CanberraGoogle Scholar
  58. Gershon S, Shopsin B (1973) Lithium, Its role in psychiatric research and treatment. Plenum Press, New York, pp 107–140Google Scholar
  59. Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (2001) Boron in plant and animal nutrition. Springer Science+Business Media, LCC, pp 37–50Google Scholar
  60. Goyer RA (1995) Nutrition and metal toxicity. Am J Clin Nutr 61(3 Suppl):646–650CrossRefGoogle Scholar
  61. Grandjean EM, Aubry JM (2009) Lithium: updated human knowledge using an evidence-based approach: part III: clinical safety. CNS Drugs 23:397–418PubMedCrossRefPubMedCentralGoogle Scholar
  62. Grant ECG (2004) Epilepsy and manganese. Lancet 363(9408):572PubMedCrossRefPubMedCentralGoogle Scholar
  63. Greathouse DG, Osborne RH (1980) Preliminary report on nationwide study of drinking water and Cardiovascular diseases. J Environ Pathol Toxicol 4(2–3):65–76PubMedPubMedCentralGoogle Scholar
  64. Greger JL (1999) Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neurotoxicol 20:205–212Google Scholar
  65. Grimsdottir MR, Hensten-Pettersen A (1993) Cytotoxical and antibacterial effects of orthodontic appliances. Scand J of Dent Res 101(4):229–231CrossRefGoogle Scholar
  66. Grossman H, Duggan E, McCamman S, Weichert E, Hellerstein S (1980) The dietary chloride deficiency syndrome. Pediatrics 66:366–374PubMedPubMedCentralGoogle Scholar
  67. Gupta V, Kumar A, Asthana RK (2012) Serum zink and copper levels in aplastic anemia. Indian Pediatr 49(6):493–494PubMedCrossRefPubMedCentralGoogle Scholar
  68. Haddad FS, Kouyoudmdidjian A (1986) Silica stones in humans. Urol Int 421:70–76CrossRefGoogle Scholar
  69. Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:836S–841SPubMedCrossRefGoogle Scholar
  70. Hawkes WC, Turek PJ (2001) Effects of dietary selenium on sperm motility in healthy men. J Androl 22:764–772PubMedGoogle Scholar
  71. Hayes CR, Incledio S, Balch M (2008) Experience in Wales (UK) of the optimisation of orthophosphate dosing for controlling lead in drinking water. J Water Health 6:177–185CrossRefGoogle Scholar
  72. Hendrix P, Van Cauwenbergh R, Robberecht H, Deelstra H (1997) Z Lebensm Unters Forsch A 204:1656–1167CrossRefGoogle Scholar
  73. Henjum S, Barikmoa I, Gjerlauga AK, Mohamed-Lehabiba A, Oshauga Strand TA, Torheim LE (2010) Endemic goitre and excessive iodine in urine and drinking water among Saharawi refugee children. Public Health Nutr 13:1472–1477PubMedCrossRefGoogle Scholar
  74. Hill ID, Bowie MD (1983) Chloride deficiency syndrome due to chloride deficient breast milk. Arch Dis Child 58(3):224–226PubMedPubMedCentralCrossRefGoogle Scholar
  75. Holmström H, Swedling EO (1997) Vatten (Water). Föreningen Vatten 53:191–196Google Scholar
  76. Hullin RP, Johnson AW (1970) Life Sci 9, 9 (In: Mertz W (1986) Lithium. Elsevier Inc.)Google Scholar
  77. Hunt CD, Idso JP (1999) Dietary boron as a physiological regulator of the inflammatory response: a review and current research progress. J Trace Elem Exp Med 12(3):221–233CrossRefGoogle Scholar
  78. Igra AM, Haran F, Lu Y, Casimiro E, Vahter M (2016) Boron exposure through drinking water during pregnancy and birth size. Envir Intern 95:54–60CrossRefGoogle Scholar
  79. Indermitte E, Saava A, Karro E (2009) Exposure to high fluoride drinking water and risk of dental fluorosis in Estonia. Int J Environ Res Public Health 6:710–721PubMedPubMedCentralCrossRefGoogle Scholar
  80. International Programme on Chemical Safety, IPCS (1999) Boron, Environmental health criteria 204,
  81. Jensen CS, Menné T, Johansen JD (2006) Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta-analysis. Contact Dermatitis 54(2):79–86PubMedCrossRefGoogle Scholar
  82. Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RPH, Powell JJ (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75:887–893PubMedCrossRefGoogle Scholar
  83. Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminium on different mouse brain regions. J Inorg Biochem 99(9):1865–1870PubMedCrossRefGoogle Scholar
  84. Kapusta ND, Mossaheb N, Etzersdorfer E, Hlavin G, Thau K, Willeit M, Praschak-Rieder N, Sonneck G, Leithner-Dziubas K (2011) Lithium in drinking water and suicide mortality. The Brit J of Psychiatry 198:346–350CrossRefGoogle Scholar
  85. Katko M, Liss I, Karpati I et al (2008) Relationship between serum nickel and homocysteine concentrations in hemodialysis patients. Biol Trace Elem Res 124:195–205PubMedCrossRefGoogle Scholar
  86. KBDF, Kashin-Beck Disease Fund (2014) (e-mail comm. William Claus), BelgiumGoogle Scholar
  87. Kessing LV, Gerds TA, Knudsen NN, Jørgensen LF, Kristiansen SM, Voutchkova D, Ernstsen V, Schullehner J, Hansen B, Andersen PK, Ersbøll AK (2017) Associations of lithium in drinking water with the incidence of dementia. Psychiatry 74(10):1005–1010Google Scholar
  88. Klaassen C, Amdur M, Doull J (1996) Toxicology, the basic science of poisons, 5th International Edition. McGraw-Hill, Health Professions Division, New YorkGoogle Scholar
  89. Klevay LM (1975) Coronary heart disease: the zinc/copper hypothesis. Am J Clin Nutr 28:764–774PubMedCrossRefGoogle Scholar
  90. Klevay LM (1980) Interactions of copper and zinc in cardiovascular disease. Ann NY Acad Sci 355:140–151PubMedCrossRefGoogle Scholar
  91. Klimis-Tavantzis DJ (1994) Manganese in health and disease. CRC Press, Boca RatonGoogle Scholar
  92. Knobeloch I, Ziarnic M, Howard J, Theis B, Farmer D, Anderson H, Proctor M (1994) Gastrointestinal upsets associated with ingestion of copper-contaminated water. Environ Health Perspect 102:958–961PubMedPubMedCentralCrossRefGoogle Scholar
  93. Korkmaz M, Uzgören E, Aydin F, Ataman OY (2006) Effects of dietary boron on cervical cytopathology and micronucleus frequency in exfoliated buccal cells. Environ Toxicol 22(1):17–25PubMedCrossRefGoogle Scholar
  94. Korshin GV, Perry SAL, Ferguson JF (1996) Influence of NOM on copper corrosion. J AWWA:36–46CrossRefGoogle Scholar
  95. Krajcovicova-Kudlackova M, Buckova K, Klimes I et al (2003) Iodine deficiency in vegetarians and vegans. Ann Nutr Metab 47:183–185PubMedCrossRefGoogle Scholar
  96. Laine L, Bentley E, Chandrosama P (1988) Effect of oral iron therapy on the upper gastrointestinal tract. A prospective evaluation. Dig Dis Sci 33(2):172–177PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lescure A, Deniziak M, Rederstorff M, Krol A (2008) Molecular basis for the role of selenium in muscle development and function. Chem Biodivers 5:408–413PubMedCrossRefGoogle Scholar
  98. Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V (2009) Selenoprotein function and muscle disease. Biochim Biophys Acta 1790:1569–1574PubMedCrossRefGoogle Scholar
  99. Li Z, Karp H, Zerlin A, Lee TYA, Carpenter C, Heber D (2010) Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study. Nutr J 9:44PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lima K, Lima R, Goncalves M, Faituch J, Morals L, Asciutti L, Costa M (2014) High frequency of serum chromium deficiency and association of chromium with triglyceride and cholesterol concentrations in patients awaiting bariatric surgery. Obes Surg 24(5):771–776PubMedCrossRefGoogle Scholar
  101. Lindström Claesson E (2009) Even high pH damages your teeth.
  102. Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M, Veloudaki A, Tzala E, Makris KC, Karagas MR (2011) Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece-an ecological study. Environ Health 10:50Google Scholar
  103. Litovitz TL et al (1988) Clinical manifestation of toxicity in a series of 784 boric acid ingestions. Am J Emerg Med 31:209–213CrossRefGoogle Scholar
  104. Liu HL, Lam LT, Zeng Q, Han SQ, Fu G, Hou CC (2008) Effects of drinking water with high iodine concentration on the intelligence of children in Tianjin. China. J Public Health 31(1):32–38CrossRefGoogle Scholar
  105. Liu H, Zeng Q, Cui Y, Yu L, Zhao L, Hou C, Zhang S, Zhan L, Fu G, Liu Y, Jiang C, Chen X, Wang A (2014) The effects and underlying mechanism of excessive iodine on excessive fluoride-induced thyroid cytotoxicity. Environ Toxicol Pharmacol 38(1):332–340PubMedCrossRefGoogle Scholar
  106. Lutai GF (1992) Chemical composition of drinking water and the health of population. (In Russian). Gig Sanit 157(1):13–15Google Scholar
  107. Maberley GF, Eatsman CJ, Corcoran JM (1981) Effects of iodination of a village water-supply on goitre size and thyroid function. Lancet 318:1270–1272CrossRefGoogle Scholar
  108. Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ (2011) Dietary silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen prospective osteoporosis screening study. Bone 50:681–687PubMedCrossRefGoogle Scholar
  109. Martin A (2011) Zinc deficiency. Nutrition 10:1085–1086Google Scholar
  110. Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267CrossRefGoogle Scholar
  111. Masironi R (1969) Trace elements and cardiovascular diseases. Bull World Health Organ 40:305–312PubMedPubMedCentralGoogle Scholar
  112. McCoy X, Kenney MA, Montgomery C, Irwin A, Williams L, Orrell R (1994) Relation of boron to the composition and mechanical properties of bone. Environ Health Perspect 102(7):49–53PubMedPubMedCentralGoogle Scholar
  113. Meletis CD (2011) Iodine: health implications of deficiency. J Evid Based Complement Altern Med 16(3):190–194CrossRefGoogle Scholar
  114. Meltzer HL (1991) A pharmacokinetic analysis of longterm administration of rubidium chloride. J Clin Pharmacol 31(2):179–184PubMedCrossRefGoogle Scholar
  115. Mena I (1981) Manganese. In: Bronner F, Coburn JW (eds) Disorders of mental metabolism. Academic, New York, pp 233–270CrossRefGoogle Scholar
  116. Momcilovic B (1999) A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the “Lucor metallicum” family. Arh Hig Rada Toksikol 50(3):289–297PubMedGoogle Scholar
  117. Monarcha S, Kozisek F, Craun G, Donato F, Zerbini I (2009) Drinking water hardness and cardiovascular disease. Eur J Cardio Prev Rehab 16(6):735–736CrossRefGoogle Scholar
  118. Mudur G (2000) Half of Bangladesh population at risk of arsenic poisoning. Br Med J 320:822CrossRefGoogle Scholar
  119. Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O (2010) Selenium or no selenium—That is the question in tumor patients: a new controversy. Integr Cancer Ther 9:136–141PubMedCrossRefGoogle Scholar
  120. Muzalevskaya LS, Lobkovskiy AG, Kukarina NI (1993) Prevalence of cholelithiasis and urolithiasis, osteoporosis and salt arthropathy in relation to water hardness. (In Russian). Gig Sanit 58(12):17–20Google Scholar
  121. NAC, National Academy Press (2000) Copper in drinking water. Committe on copper in drinking water, national research council. Washington DC, 17–22Google Scholar
  122. Nakagawa M, Nagai K, Minami I, Wakabayashi M, Torigoe J, Kawano T (2014) Copper-deficiency anemia after esophagectomy: a pitfall of postoperative enteral nutrition through jejunostomy. Int J of Surg Case Rep 5(6):311–314CrossRefGoogle Scholar
  123. NAP, National Academic Press (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Inst of Med, Food and Nutr BoardGoogle Scholar
  124. NAS, National Academy of Sciences (1980) Drinking water and health, vol 3. National Academy Press, Washington, DCGoogle Scholar
  125. NAS, National Academy of Sciences (1989) Recommended dietary allowances, 10th edn. National Academic, Washington DC, pp 243–246Google Scholar
  126. NAS, National Institute of Health (2017) http://www.nasonline.ord
  127. Naylor GJ (1984) Vanadium and manic depression psychosis. Nutr Health 3(1–2):79–85PubMedCrossRefPubMedCentralGoogle Scholar
  128. Nedzvetsky VS, Tuzcu M, Yasar A, Tikhomirov AA, Baydas G (2006) Effects of vitamin E against aluminium neurotoxicity in rats. Biochemistry (Mosc) 71(3):239–244CrossRefGoogle Scholar
  129. Newnham X (1994) Essentiality of boron for healthy bones and joints. Environ Health Perspect 102(Suppl 7)PubMedPubMedCentralCrossRefGoogle Scholar
  130. Newnham RE (2002) How boron is being used in medival practice. In: Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (eds) Boron in plant and animal nutrition. Springer, pp 59–62Google Scholar
  131. Nielsen FH (1998) The nutritional essentiality and physiological metabolism of vanadium in higher animals. In: Tracey AS, Crans DC (eds) Vanadium compounds, Chemistry, Biochemistry, and therapeutic applications, ACS Symposium Series 711. American Chemical Society, Washington DC, pp 297–307CrossRefGoogle Scholar
  132. Nielsen FH (2006a) Boron, manganese, molybdenum, and other trace elements. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition, vol 1, 9th edn. ILSI Press, Washington DC, pp 506–526Google Scholar
  133. Nielsen FH (2006b) The ultra trace elements. In: Stipanuk MH (ed) Biochemical, physiological, molecular aspects of human nutrition. Saunders Elsevier, St Louis, pp 1143–1163Google Scholar
  134. Nielsen FH, Meacham SL (2011) Growing evidence for human health benefits of boron. J Evid Based Complement Alternat Med 16(3):169–180CrossRefGoogle Scholar
  135. NRC, National Research Council (1978) Zinc. Committee on medical and biological effects of environmental pollutants, Nat Acad Sci, Washington DCGoogle Scholar
  136. NRC, National Research Council (2000) Recommended daily allowances, 11th edn. National Academy of Sciences, Washington DC. 1989Google Scholar
  137. NSFA, National Swedish Food Administration (2001) Prescriptions for drinking water, (Statens livsmedelsverk, Föreskrifter om dricksvatten, in Swedish)Google Scholar
  138. NSFA, The National Swedish Food Administration (1989) Statens kungörelse om dricksvatten. Prescriptions for drinking water, The National Swedish Food Administration, 1989: 30 (In Swedish)Google Scholar
  139. Nunes MA, Viel TA, Buck HS (2013) Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr Alzheimer Res 10(1):104–107PubMedPubMedCentralGoogle Scholar
  140. Oberlin O, Plantin-Carrenard E, Rigal O, Wilkinson C (2006) Goitre and iodine deficiency in Afghanistan: a case–control study. Br J Nutr 95:196–203PubMedCrossRefPubMedCentralGoogle Scholar
  141. Ohgami H, Terao T, Shiotsuki I, Ishii N, Iwata N (2009) Lithium levels in drinking water and risk of suicide. Br J Psychiatry 194(5):464–465. Scholar
  142. Ong WY, Halliwell B (2004) Iron, atherosclerotic and neurodegeneration: a key role for cholesterol in promoting iron-dependant oxidative damage? Ann NY Acad Sci 1012:51–64PubMedCrossRefPubMedCentralGoogle Scholar
  143. Ovadia YS, Troen AM, Gefel D (2013) Seawater desalination and iodine deficiency: is there a link? IDD newsletter august 2013 Israel. Barzilai Medical Center, Ashkelon and School of Nutrition Science, The Hebrew University, JerusalemGoogle Scholar
  144. Peng X, Lingzia Z, Schrauzer GN, Xiong G (2000) Seleniu, boron and germanium deficiency in the ethiology of Kashin-Beck disease. Biol Trace Elem Res 77:193–197PubMedPubMedCentralCrossRefGoogle Scholar
  145. Petrone P, Giordano M, Giustino S, Guarino FM (2010) Enduring fluoride health Hazard for the Vesuvius area. Population: the case of AD 79 Herculaneum, PLoSONE (
  146. Price CJ, Strong PL, Marr MC, Myers CB, Murray FJ (1996) Developmental toxicity NOAEL and postnatal recovery in rats fed boric acid during gestation. Fundam Appl Toxicol 32:179–193PubMedCrossRefPubMedCentralGoogle Scholar
  147. Prohaska JR (2014) Impact of copper deficiency in humans. Ann NY Acad Sci 1314:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rainey C, Nyqvist L (1998) Multicountry estimation of dietary boron intake. Biol Trace Elem Res 66:79–86PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rayman M, Thompson A, Warren-Perry M, Galassini R, Catterick J, Hal E, Lawrence D, Bliss J (2006) Impact of selenium on mood and quality of life: a randomized controlled trial. Biol Psychiatry 59:147–154PubMedCrossRefPubMedCentralGoogle Scholar
  150. Razdan P, Patthi B, Kumar JK, Agnihotri N, Chaudhari P, Prasad M (2017) Effect of fluoride concentration in drinking water on intelligence quotient of 12-14-year-old children in Mathura District: a cross-sectional study. J Int Soc Prev Community Dent 7(5):252–258PubMedPubMedCentralGoogle Scholar
  151. Reffitt DM, Jugdaohsingh R, Thompson RP, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147PubMedCrossRefPubMedCentralGoogle Scholar
  152. Reimann C, Birke M (2010) Geochemistry of European bottled water. Schweizerbartsche, 268 ppGoogle Scholar
  153. Rimm X (2002) Toenail chromium levels and risk of coronary heart disease among normal and overweight men. AHA-Epidemiology Meeting AbstractGoogle Scholar
  154. Riojas-Rodríguez H, Solís-Vivanco R, Schilmann A, Montes S, Rodríguez S, Ríos C, Rodríguez-Agudelo Y (2010) Environ Health Perspect 118(10):1465–1470. OnlinePubMedPubMedCentralCrossRefGoogle Scholar
  155. Rosborg I (2005) Mineral element contents in drinking water- aspects on quality and potential links to human health. Doctoral thesis, Lund UniversityGoogle Scholar
  156. Rosborg I (2014) Elevated iron concentrations in drinking water–a potential health risk, Int J Environ Sci Toxicol Res. On-lineGoogle Scholar
  157. Rosborg I, Gerhardsson L, Nihlgård B (2002) Inorganic constituents of well water in one acid and one alkaline area of South Sweden. Water Air Soil Pollut 142:261–277CrossRefGoogle Scholar
  158. Rosborg I, Nihlgard B, Gerhardsson L (2003) Hair element concentrations in females in one acid and one alkaline area in South Sweden. Ambio 32(7):440–446PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rosborg I, Nihlgård B, Gerhardsson L (2005) Concentrations of inorganic elements in bottled waters on the Swedish market. Environ Geochem Health 27(3):17–227CrossRefGoogle Scholar
  160. Samuelsson U, Ludvigsson J, Oikarinen S, Hyöty H (2011) Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes 12(3):156–164PubMedCrossRefPubMedCentralGoogle Scholar
  161. Schomburg L (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8:160–171PubMedCrossRefPubMedCentralGoogle Scholar
  162. Schrauzer GN, Shrestha KP (1990) Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res 25(2):105–113PubMedCrossRefPubMedCentralGoogle Scholar
  163. Schwarz K, Milne DB (1972) Growth promoting effects of silicon in rats. Nature 239:333–334PubMedCrossRefPubMedCentralGoogle Scholar
  164. Schwarz K, Ricci BA, Punsar S, Karvonen MJ (1977) Inverse relation of silicon in drinking water and atherosclerosis in Finland. Lancet 1(8010):538–539PubMedCrossRefPubMedCentralGoogle Scholar
  165. Schweizer U, Dehina N, Schomburg L (2011) Disorders of selenium metabolism and selenoprotein function. Curr Opin Pediatr 23:429–435PubMedCrossRefPubMedCentralGoogle Scholar
  166. Sciacca S, Oliveri Conti G, Fiore M, Fallico R, Ferrante, M (2011) Carcinogens from water disinfection. ISBN 978-161209-543-1. Nova Science Publishers, inc. 400 Oser Avenue, New York. 9Google Scholar
  167. Shena H, Liua S, Suna D, Zhanga S, Xiaohui S, Shena Y, Hana H (2011) Geographical distribution of drinking water with high iodine level and association between high iodine level in drinking water and goitre: a Chinese national investigation. Br J Nutr 106(2):243–247CrossRefGoogle Scholar
  168. Shenberg C, Boazi M, Cohen J, Klein A, Koijer M, Nyska A, Rave S (1994) J Trace Elements Health Dis 8:177. In: Daily dietary rubidium intake in Belgium using duplicate prtion samplingGoogle Scholar
  169. Shenberg C, Feldstein H, Cornelis R, Mees L, Versieck J, Van-ballenberghe L, Cafmeyer J, Maenhout W (1995) Journal of Trace Elements Med Biol (In: Daily dietary rubidium intake in Belgium using duplicate prtion sampling. Hendrix P, Van Cauwenbergh R, Robberecht H, Deelstra H (1997) Z Lebensm Unters Forsch A, 204:1656–167)Google Scholar
  170. Shils ME, Olson JA, Shike M, Ross AC (1999) Modern nutrition in health and disease, 9th edn. Lippincott Williams & WilkinsGoogle Scholar
  171. Simonoff M (1984) Chromium deficiency and cardiovascular risk. Cardiovasc Res 18:591–559PubMedCrossRefGoogle Scholar
  172. Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology—a brief update. Sci Total Environ 432:210–215PubMedCrossRefGoogle Scholar
  173. Sjöberg S (1996) Silica in aqueous environments. J Non-Cryst Solids 196:51–57CrossRefGoogle Scholar
  174. Smedley P, Cooper D, Lapworth D (2014) Molybdenum distributions and variability in drinking water from England and Wales. Environ Monit Assess 186(10):6403–6416PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sonesson B, Sonesson G (2001) Anatomy and physiology. (Anatomi och fysiologi, in Swedish). LIBER, Falköping, SwedenGoogle Scholar
  176. Stenhammar L (1999) Diarrhoea following contamination of drinking water with copper. Eur J Med Res 28:217–218Google Scholar
  177. Stolk JM, Nowack JM, Barchas JD (1970) Brain norepinephrine: enhanced turnover after rubidium treatment. Science, 168:501–503 (In: Current Trends in Lithium and Rubidium Therapy. Proceedings of an International Symposium on Lithium and Rubidium Therapy held in Venice, 29 September–1st October 1983)Google Scholar
  178. Sullivan JL (1981) Iron and the sex difference in heart disease risk. Lancet 1:1293–1294PubMedCrossRefGoogle Scholar
  179. Sullivan JL (2007) Macrophag iron, hepcidin, and atherosclerotic plaque stability. Exp Biol Med 232:1014–1020CrossRefGoogle Scholar
  180. Sutter ME, Thomas JD, Brown J, Morgan B (2008) Selenium toxicity: a case of Selenosis caused by a nutritional supplement. Ann Intern Med 48(12):970–971CrossRefGoogle Scholar
  181. Thuvander A, Oskarsson A (1997) Adverse health effects due to soil and water acidification. SEPA Report 4881(Swedish Environment Protection Agency), 32–33Google Scholar
  182. Triggiani V, Tafaro E, Giagulli VA, Sabbà C, Resta F, Licchelli B, Guastamacchia E (2009) Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 9(3):277–294PubMedCrossRefGoogle Scholar
  183. Underwood EJ (1977) Trace elements in human and animal nutrition, vol 61, 4th edn. Academic, New York, pp 226–231Google Scholar
  184. US HHSD, (Health and Human Services Department) (2011) Proposed HHS recommendation for Fluoride concentration in drinking water for prevention of dental caries. A Notice. Federal Register, 13 Jan, 2011Google Scholar
  185. Usuda K, Kono K, Dote T, Watanabe M, Shimizu T, Usuda K et al (2007) An overview of born, lithium, and strontium in human health and profiles of these elements in urine in Japanese. Environ Health Prev 12:231–237CrossRefGoogle Scholar
  186. Valco M, Moncol J (2009) Vanadium deficiency and excess. In: Encyclopedia of molecular mechanisms of disease. Springer, Heidelberg, pp 2163–2165Google Scholar
  187. Voors AW (1971) Minerals in the municipal water and atherosclerotic heart death. Am J Epidemiol, 93:259–266. In: Trace elements in human nutrition and health. WHO 1996:224–225Google Scholar
  188. Vyskocil A, Viau C (1999) Assessment of molybdenum toxicity in humans. J Appl Toxicol 19(3):185–192PubMedCrossRefGoogle Scholar
  189. Walton JR (2005) Aluminium in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27(3):385–394CrossRefGoogle Scholar
  190. WHO (1996a) Trace elements in human nutrition and health. WHO, GenevaGoogle Scholar
  191. WHO (1996b) Zink in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO. GenevaGoogle Scholar
  192. WHO (2002) Environmental health criteria 228, principles and methods for the assessment of risk from essential trace elements. WHO, GenevaGoogle Scholar
  193. WHO (2003) Zinc in drinking water. Background document for development of Guidelines for drinking water quality. WHO, GenevaGoogle Scholar
  194. WHO (2004) Copper in drinking water. Background document for development of WHO Guidelines for Drinking-Water QualityGoogle Scholar
  195. WHO (2005) Nutrients in drinking water. WHO, GenevaGoogle Scholar
  196. WHO (2010) Inadequate or excess fluoride: a major public health concern. WHO, GenevaGoogle Scholar
  197. WHO (2017) Guidelines for drinking water quality, 4th edn. WHO, GenevaGoogle Scholar
  198. Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Bhushan V, Kroft SH (2005) Zink-induced copper deficiency –a report of three cases initially recognized on bone-marrow examination. Amer J of Clin Path 123(1):125–131CrossRefGoogle Scholar
  199. Withers A (2018) Options for Recarbonization, remineralization and disinfection for desalination plants. Desalination 179:11–24CrossRefGoogle Scholar
  200. Xu C, Wu F, Mao C, Wang Z, Zheng T, Bu L, Mou X, Zhou Y, Yuan G, Wang S, Xiao Y (2016) Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. J Autoimmun 75:50–57PubMedCrossRefGoogle Scholar
  201. Yang G (1983) On the etiology of Keshan disease. Adv Physiol Sci 14:313–317Google Scholar
  202. Yang G, Ge KY, Chen JS, Chen XS (1988) Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev Nutr Diet 55:98–152PubMedPubMedCentralCrossRefGoogle Scholar
  203. Yazbeck C, Kloppmann W, Cottier R, Sahuquillo J, Debotte G, Huel G (2005) Health impact evaluation of boron in drinking water: a geographical risk assessment in Northern France. Environ Geochem Health 27:419–427PubMedCrossRefGoogle Scholar
  204. Zeng BS, Ding ZH, Huang RG et al (1999) Issues of health and disease relating to coal use in southwestern China. Int J Coal Geol 40:119–132CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sustainable Development, Environmental Science and Engineering (SEED)KTH, Royal Institute of EngineeringStockholmSweden
  2. 2.Department of MedicalSurgical and Advanced Technologies “G. F. Ingrassia”, University of CataniaCataniaItaly
  3. 3.BombayIndia

Personalised recommendations