Skip to main content

Adaptive Security Based on MAPE-K: A Survey

  • Chapter
  • First Online:
Applied Decision-Making

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 209))

Abstract

As systems evolve into interconnected heterogeneous components, their security threats increase in number and complexity, and static security measures are not capable of confronting all of them. A strategy to address this issue is the use of autonomic software, which adapts the security mechanisms at runtime according to the environmental changes that impact on the required security level. An approach to achieve autonomic computing is by using the MAPE-K reference model developed by IBM, which consists of a feedback loop composed of the functions: Monitor, Analyze, Plan, and Execute. In this manuscript, adaptive security models based on MAPE-K are surveyed, their characteristics are described, and a comparison of their domains, structures, and adaptive objectives is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer (2003). https://doi.org/10.1109/MC.2003.1160055

    Article  Google Scholar 

  2. IBM: An architectural blueprint for autonomic computing. IBM White Paper. https://www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf (2005). Accessed 29 Dec 2018

  3. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems Through Feedback Loops. Software Engineering for Self-Adaptive Systems, pp. 48–70 (2009). https://doi.org/10.1007/978-3-642-02161-9_3

    Chapter  Google Scholar 

  4. D’Angelo, M., Caporuscio, M., Napolitano, A.: Model-driven engineering of decentralized control in cyber-physical systems. In: 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W) (2017). https://doi.org/10.1109/FAS-W.2017.113

  5. D’Angelo, M., Napolitano, A., Caporuscio, M., Chess, D.M.: CyPhEF: a model-driven engineering framework for self-adaptive cyber-physical systems. In: 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion) (2018). ISSN 2574-1934

    Google Scholar 

  6. Eryilmaz, E., Trollmann, F., Albayrak, S.: Conceptual application of the MAPE-K feedback loop to opportunistic sensing. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2015). https://doi.org/10.1109/SDF.2015.7347697

  7. Seo, Y., Kim, Y., Lee, E., Seol, K., Baik, D.: Design of a smart greenhouse system based on MAPE-K and ISO/IEC-11179. In: 2018 IEEE International Conference on Consumer Electronics (ICCE) (2018). https://doi.org/10.1109/ICCE.2018.8326276

  8. Adler, R., Schneider, D., Trapp, M.: Development of safe and reliable embedded systems using dynamic adaptation. In: 2007 1st Workshop on Model-Driven Software Adaptation M-ADAPT’07 at ECOOP (2007). https://doi.org/10.1007/978-3-540-78195-0_13

  9. Ma, S., Wang, Y.: Self-adaptive access control model based on feedback loop. In: 2013 International Conference on Cloud Computing and Big Data (2013). https://doi.org/10.1109/CLOUDCOM-ASIA.2013.94

  10. Bailey, C., Chadwick, D.W., Lemos, R.D.: Self-adaptive authorization framework for policy based RBAC/ABAC models. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (2011). https://doi.org/10.1109/DASC.2011.31

  11. Evesti, A., Suomalainen, J., Ovaska, E.: Architecture and knowledge-driven self-adaptive security in smart space. Computer (2013). https://doi.org/10.3390/computers2010034

    Article  Google Scholar 

  12. Pinto, M., Gámez, N., Fuentes, L., Amor, M., Horcas, J. M., Ayala, I.J.: Dynamic reconfiguration of security policies in wireless sensor networks. J. Sens. (2015). https://doi.org/10.3390/s150305251

    Article  Google Scholar 

  13. Amoud, M., Roudies, O.: MaPE-K-based approach for security @ runtime. In: 2016 IEEE International Conference on Software Science, Technology and Engineering (SWSTE) (2016). https://doi.org/10.1109/SWSTE.2016.28

  14. Amoud, M., Roudies, O.: Dynamic adaptation and reconfiguration of security in mobile devices. In: International Conference on Cyber Incident Response, Coordination, Containment Control (Cyber Incident) (2017). https://doi.org/10.1109/CYBERINCIDENT.2017.8054639

  15. Amoud M., Roudies O.: Using combination of MAPE-K and DSPL to secure smart camera networks. In: Proceedings of the International Conference on Industrial Engineering and Operations Management (2017)

    Google Scholar 

  16. Singh, M., Kim, S.: Reconcile security requirements for intelligent vehicles. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS) (2017). https://doi.org/10.23919/ICCAS.2017.8204251

  17. Gwak, B., Cho, J., Lee, D., Son, H.: TARAS: trust-aware role-based access control system in public internet-of-things. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. 12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) (2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00022

  18. Settanni, G., Skopik, F., Karaj, A., Wurzenberger, M., Fiedler, R.: Protecting cyber physical production systems using anomaly detection to enable self-adaptation. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS) (2018). https://doi.org/10.1109/ICPHYS.2018.8387655

  19. Muñndez, J.C., Mazo, R., Salinesi, C., Tamura, G.: 10 Challenges for the specification of self-adaptive software. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS) (2018). https://doi.org/10.1109/RCIS.2018.8406640

  20. Conti, M., Das, S.K., Bisdikian, C., Kumar, M., Ni, L.M., Passarella, A., Roussos, G., Tröster, G., Tsudik, G., Zambonelli, F.: Looking ahead in pervasive computing: challenges and opportunities in the era of cyber-physical convergence. In: Pervasive and Mobile Computing, Technology and Engineering (SWSTE) (2012). https://doi.org/10.1016/j.pmcj.2011.10.001

    Article  Google Scholar 

  21. Elkhodary, A., Whittle, J.: A survey of approaches to adaptive application security. In: Proceedings of the 2007 International Workshop on Software Engineering for Adaptive and Self-Managing Systems (2007). https://doi.org/10.1109/SEAMS.2007.2

  22. ANSI: American National Standard for Information Technology—Role Based Access Control (2012). INCITS 359-2012

    Google Scholar 

  23. ISO/IEC: Security Frameworks for Open Systems: Access Control Framework. ISO/IEC 10181-3 (1996)

    Google Scholar 

  24. Evesti, A., Savola, R., Ovaska, E., Kuusijärvi, J.: The design, instantiation, and usage of information security measuring ontology. In: Proceedings of the 2nd International Conference on Models and Ontology-Based Design of Protocols, Architectures and Services, IARIA (2011)

    Google Scholar 

  25. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. In: Systems and Software Variability Management: Concepts, Tools and Experiences (2013). https://doi.org/10.1007/978-3-642-36583-6_16

    Chapter  Google Scholar 

  26. Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines. Computer (2012). https://doi.org/10.1109/MC.2012.332

    Article  Google Scholar 

  27. INTER-TRUST European Project. https://github.com/Inter-Trust/. Accessed 8 Jan 2019

  28. Horcas, J., Pinto, M., Fuentes, L.: Runtime enforcement of dynamic security policies. In: 2018 IEEE/ACM 40th International Software Architecture (2014). ISBN 978-3-319-09970-5

    Google Scholar 

  29. Gámez, N., Fuentes, L.: FamiWare: a family of event-based middleware for ambient intelligence. Pers. Ubiquitous Comput. (2011). https://doi.org/10.1007/s00779-010-0354-0

    Article  Google Scholar 

  30. Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: 2008 12th International Software Product Line Conference (2008). https://doi.org/10.1109/SPLC.2008.25

  31. SanMiguel, J.C., Micheloni, C., Shoop, K., Foresti, G.L., Cavallaro, A.: Self-reconfigurable smart camera networks. Computer (2014). https://doi.org/10.1109/MC.2014.133

    Article  Google Scholar 

  32. Pinel, E.C., Long, A.E., Landau, M.J., Alexander, K., Pyszczynski, T.: Seeing I to I: a pathway to interpersonal connectedness. J. Pers. Soc. Psychol. (2006). https://doi.org/10.1037/0022-3514.90.2.243

    Article  Google Scholar 

  33. Pinel, E.C., Long, A.E., Crimin, L.A.: I-sharing and a classic conformity paradigm. Soc. Cognit. (2010). https://doi.org/10.1521/soco.2010.28.3.277

    Article  Google Scholar 

Download references

Funding

This work was funded by CONACYT, under grant number 536467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelina Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara, E., Aguilar, L., Sanchez, M.A., García, J.A. (2019). Adaptive Security Based on MAPE-K: A Survey. In: Sanchez, M., Aguilar, L., Castañón-Puga, M., Rodríguez, A. (eds) Applied Decision-Making. Studies in Systems, Decision and Control, vol 209. Springer, Cham. https://doi.org/10.1007/978-3-030-17985-4_7

Download citation

Publish with us

Policies and ethics