Skip to main content

Compact LEA and HIGHT Implementations on 8-Bit AVR and 16-Bit MSP Processors

  • Conference paper
  • First Online:
Book cover Information Security Applications (WISA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11402))

Included in the following conference series:

Abstract

In this paper, we revisited the previous LEA and HIGHT implementations on the low-end embedded processors. First, the general purpose registers are fully utilized to cache the intermediate results of delta variable during key scheduling process of LEA. By caching the delta variables, the number of memory access is replaced to the relatively cheap register access. Similarly, the master key and plaintext are cached during key scheduling and encryption of HIGHT block cipher, respectively. Second, stack storage and pointer are fully utilized to store the intermediate results and access the round keys. This approach solves the limited storage problem and saves one general purpose register. Third, indirect addressing mode is more efficient than indexed addressing mode. In the decryption process of LEA, the round key pair is efficiently accessed through indirect addressing with minor address modification. Fourth, 8-bit word operations for HIGHT is efficiently handled by 16-bit wise instruction of 16-bit MSP processors. Finally, the proposed LEA implementations on the representative 8-bit AVR and 16-bit MSP processors are fully evaluated in terms of code size, RAM and execution timing. The proposed implementations over the target processors (8-bit AVR processor, 16-bit MSP processor) are faster than previous works by (13.6%, 9.3%), (0.6%, 8.5%), and (3.4%, 1.5%) for key scheduling, encryption, and decryption, respectively. Similarly, the proposed HIGHT implementations on the 16-bit MSP processors are faster than previous works by 38.6%, 33.7%, and 33.6% for key scheduling, encryption, and decryption, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indirect memory access requires 2 clock cycles and indexed memory access requires 3 clock cycles.

References

  1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, p. 175. ACM (2015)

    Google Scholar 

  2. Gouvêa, C.P.L., López, J.: High speed implementation of authenticated encryption for the MSP430X microcontroller. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 288–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_16

    Chapter  Google Scholar 

  3. Gouvêa, C.P., Oliveira, L.B., López, J.: Efficient software implementation of public-key cryptography on sensor networks using the MSP430X microcontroller. J. Cryptogr. Eng. 2(1), 19–29 (2012)

    Article  Google Scholar 

  4. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_1

    Chapter  Google Scholar 

  5. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_4

    Chapter  Google Scholar 

  6. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

    Chapter  Google Scholar 

  7. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_5

    Chapter  Google Scholar 

  8. Park, T., Seo, H., Liu, Z., Choi, J., Kim, H.: Compact implementations of LSH. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 41–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_4

    Chapter  Google Scholar 

  9. Seo, H., Jeong, I., Lee, J., Kim, W.-H.: Compact implementations of ARX-based block ciphers on IoT processors. ACM Trans. Embed. Comput. Syst. (TECS) 17(3), 60 (2018)

    Google Scholar 

  10. Seo, H., Liu, Z., Choi, J., Park, T., Kim, H.: Compact implementations of LEA block cipher for low-end microprocessors. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 28–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_3

    Chapter  Google Scholar 

  11. Seo, H., et al.: Parallel implementations of LEA. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 256–274. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_16

    Chapter  Google Scholar 

  12. Seo, H., et al.: Parallel implementations of LEA, revisited. In: Choi, D., Guilley, S. (eds.) WISA 2016. LNCS, vol. 10144, pp. 318–330. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56549-1_27

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported as part of Military Crypto Research Center (UD170109ED) funded by Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, H., An, K., Kwon, H. (2019). Compact LEA and HIGHT Implementations on 8-Bit AVR and 16-Bit MSP Processors. In: Kang, B., Jang, J. (eds) Information Security Applications. WISA 2018. Lecture Notes in Computer Science(), vol 11402. Springer, Cham. https://doi.org/10.1007/978-3-030-17982-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17982-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17981-6

  • Online ISBN: 978-3-030-17982-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics