Advertisement

Embodied Language in Brains and Robots: The Question of Geometrical Reference Frames

  • Alain BerthozEmail author
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 130)

Abstract

In this chapter, we argue that “wording robotics” requires that we take into account the fact that robots and humans share common principles for action and perception, make use of common reference frames, are able to perform perspective change, and have the required flexibility for understanding and sharing others emotions, intentions and desires. In this perspective, we overview recent results in neurophysiology emphasizing the capacity of the brain to manage various geometrical reference frames.

Keywords

Neurophysiology Embodied language Reference frames Geometry 

References

  1. 1.
    Merleau-Ponty, M.: La Phénoménologie de la Perception. Paris (1945)Google Scholar
  2. 2.
    Berthoz, A., Petit, J.L.: The Physiology and Phenomenology of action. Oxford University Press, Oxford (2008)Google Scholar
  3. 3.
    Berthoz, A.: (2000) The Brain’s Sense of Movement. Harvard University Press. Italian edition: Berthoz, A.: Il sense di movimiento Mc Grax Hill (2000). French edition: Berthoz, A.: Le sens du Mouvement. O. Jacob. Paris (1997)Google Scholar
  4. 4.
    Bergson, H.: Essai sur les données immédiates de la conscience. PUF (1958)Google Scholar
  5. 5.
    Varela, F.J., et al.: The Embodied Mind, Cognitive Science and Human Experience. MIT Press, Cambridge, MA (1991)Google Scholar
  6. 6.
    Allott, R.M.: The Physical Foundations of Language. Seaford (1973)Google Scholar
  7. 7.
    Cowley, S.J., Vallée-Tourangeau, F.: Cognition Beyond the Brain. Springer, London (2013)Google Scholar
  8. 8.
    Bottineau, D.: “Remembering voices past: languaging as an embodied interactive cognitive technique”. In: Pivovar, E.I. (ed.) Gumanitarniye chteniya RGGU—(2012): Teoriya i metodoligiya gumanitarnogo znaniya: Sbornik materialov [Readings in Humanities RSUH—(2012): Theory and Methodology of Humanitarian Knowledge: Conference Proceedings]. Moscow: RGGU [Russian State University for the Humanities], pp. 194–219 (2013)Google Scholar
  9. 9.
    Bottineau, D.: Language and enaction. In: Stewart, J., Gapenne, O., Di Paolo, E. (eds.) Enaction: Toward a New Paradigm for Cognitive Science, pp. 267–306. MIT Press, Cambridge, MA (2013)Google Scholar
  10. 10.
    Barnabé, A.: De l’expérience kinesthésique à la sélection lexicale: Incidence de l’activité corporelle sur le choix du verbe en français et en anglais. In: Pour une linguistique sensorielle. Éditions H. Champion, Paris (2016)Google Scholar
  11. 11.
    Barnabé, A.: Description verbale du mouvement dans le cadre de la typologie talmienne—une évaluation au croisement de deux paradigmes: le cognitivisme et l’enactivisme. Anglophonia 22 (2016)Google Scholar
  12. 12.
    Barnabé, A.: Corps, perception, déplacements: de l’expérience kinesthésique à la cognition linguistique: étude du schème du chemin en grammaire et sémantique anglaises et statut de ce schème en linguistique cognitive. Thesis Bordeaux Montaigne University, Bordeaux (2012)Google Scholar
  13. 13.
    Barnabé, A.: The language of space: a linguistic space? Peter Lang. In: Inhabiting Language, Constructing Language/Habiter la langue, construire la langue, pp. 79–106 (submitted) (2017)Google Scholar
  14. 14.
    Grèzes, J., Decety, J.: Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12(1), 1–19 (2001)Google Scholar
  15. 15.
    Berthoz, A.: Simplexity. Yale University Press (2011)Google Scholar
  16. 16.
    Berthoz, A.: The vicarious brain. Creator of worlds. Harvard University Press, Cambridge, MA (London) (2017)Google Scholar
  17. 17.
    Viviani, P., Flash, T.: Minimum jerk, two thirds power law and isochrony. Converging approach to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21, 32–53 (1995)Google Scholar
  18. 18.
    Vieilledent, S., Dalbera, S., Kerlirzin, Y., Berthoz, A.: Relationship between velocity and curvature of a human locomotor trajectory. Neurosci. Lett. 305, 65–69 (2001)Google Scholar
  19. 19.
    Bennequin, D., Fuch, R., Berthoz, A., Flash, T.: Movement timing and invariance arise from several geometries. PLoS Comput. Biol. 5(7), e1000426 (2009)MathSciNetGoogle Scholar
  20. 20.
    Atkinson, A.P., Dittrich, W., Gemmell, A.J., Young, A.W.: Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 33(6), 717–746 (2004)Google Scholar
  21. 21.
    Maoz, Berthoz A., Flash, T.: Complex unconstrained three-dimensional hand movement and constant equi-affine speed. J. Neurophysiol. 101(2), 1002–1015 (2009)Google Scholar
  22. 22.
    Dominici, N., et al.: Kinematic strategies in newly walking toddlers stepping over different support surfaces. J. Neurophysiol. 103(3), 1673–1684 (2010)Google Scholar
  23. 23.
    Arechavaleta, G., Laumond, J.P., Berthoz, A., Hicheur, H.: Optimising principles underlying the shape of trajectories in goal oriented locomotion for humans. In: 6th IEEE-RAS International Conference on Humanoid Robots, pp. 131–136 (2006)Google Scholar
  24. 24.
    Hicheur, H., Pham, C., Arechavaleta, G., Laumond, J.P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behaviour. Eur. J. Neurosci. 26(8), 2376–2390 (2007)Google Scholar
  25. 25.
    Pham, C., Hicheur, H., Arechavaleta, G., Laumond, J.P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26(8), 2391–2403 (2007)Google Scholar
  26. 26.
    Mori, M., et al.: “ The uncanny valley” [«La vallée de l’étrange»]. Energy 7(4), 33–35 (1970)Google Scholar
  27. 27.
    Kätsyri, J., Förger, K., Ta, M.: Review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front Psychol. 6, 390 (2015).  https://doi.org/10.3389/fpsyg.2015.00390Google Scholar
  28. 28.
    Berthoz, A.: Parietal and hippocampal contribution to topokinetic and topographic memory. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. Rev. 352, 1437–1448 (1997)Google Scholar
  29. 29.
    Galati, G., Pelle, G., Berthoz, A., Commiteri, G.: Multiple reference frames used by the human brain for spatial perception and memory. Exp. Brain Res. 206(2), 109–120 (2010)Google Scholar
  30. 30.
    Sulpizio, V., Committeri, G., Lambrey, S., Berthoz, A., Galati, G.: Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behav. Brain Res. 1(242), 62–75 (2013)Google Scholar
  31. 31.
    Igloi, K., Zaoui, M., Berthoz, A., Rondi-Reig, L.: Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus 19(12), 1199–1211 (2009)Google Scholar
  32. 32.
    Kahane, P., Hoffmann, D., Miotti, L., Berthoz, A.: Reapraisal of the human vestibular cortex by cortical electrical stimulation study. Ann. Neurol. 54(5), 615–624 (2003)Google Scholar
  33. 33.
    Degos, J.D., Bachoud-Levi, A.C.: La désignation et son objet. Pour une neuropsychologie de l’objectivation. Progrès neurologique 154(4), 283–290 (1998)Google Scholar
  34. 34.
    Degos, J.D.: Troubles de la désignation. Revue de Neuropsychologie 11(2), 257–265 (2001)Google Scholar
  35. 35.
    Weiss, J., et al.: Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123, 2531–2541 (2000)Google Scholar
  36. 36.
    Bennequin, D., Berthoz, A.: Several geometries for the generation of movement. In: Laumond, J.P., et al. (eds) Geometric and Numerical Foundations of Movements. Springer (2017)Google Scholar
  37. 37.
    Lambrey, S., Doeller, C., Berthoz, A., Burgess, N.: Imagining being somewhere else: neural basis of changing perspective in space. Cereb. Cortex. 22(1), 166–174 (2012)Google Scholar
  38. 38.
    Houdé, O., Borst, G.: Evidence for an inhibitory-control theory of the reasoning brain. Front Hum. Neurosci. 9, 148 (2015).  https://doi.org/10.3389/fnhum.2015.00148Google Scholar
  39. 39.
    King, J., et al.: Human hippocampus and view point dependence in spatial memory. Hippocampus 12, 811–820 (2002)Google Scholar
  40. 40.
    Wallentin, M., et al.: Frontal eye fields involved in shifting frame of reference within working memory for scenes. Neuropsychologia 46(2), 399–408 (2008)Google Scholar
  41. 41.
    Sulpizio, V., Committeri, G., Lambrey, S., Berthoz, A., Galati, G.: Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming. Neuroimage 125, 108–119 (2016)Google Scholar
  42. 42.
    Thirioux, B., Mercier, M.R., Jorland, G., Berthoz, A., Blanke, O.: Mental imagery of self-location during spontaneous and active self-other interactions: an electrical neuroimaging study. J. Neurosci. 30(21), 7202–7214 (2010)Google Scholar
  43. 43.
    Thirioux, B., Mercier, M.R., Blanke, O., Berthoz, A.: The cognitive and neural time course of empathy and sympathy: a neuroimaging study on self-other interaction. Neuroscience 267, 286–306 (2014)Google Scholar
  44. 44.
    Sulpizio, V., Committeri, G., Metta, E., Lambrey, S., Berthoz, A., Galati, G.: Visuospatial transformations and personality: evidence of a relationship between visuospatial perspective taking and self-reported emotional empathy. Exp. Brain Res. 233(7), 2091–2102 (2015)Google Scholar
  45. 45.
    Bavelas, J.B., et al.: Form and function in motor mimicry: topographic evidence that the primary function is communicative. Hum. Commun. Res. 14(3), 275–300 (1988)Google Scholar
  46. 46.
    Igloi, K., Doeller, C.F., Berthoz, A., Rondi-Reig, L., Burgess, N.: Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Natl. Acad. Sci. USA 107(32), 14466–14471 (2010)Google Scholar
  47. 47.
    Iglói, K., Doeller, C.F., Paradis, A.L., Benchenane, K., Berthoz, A., Burgess, N., Rondi-Reig, L.: Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cereb Cortex 25(11), 4143–4154 (2014)Google Scholar
  48. 48.
    Lambrey, S., et al.: Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 13(2), 523–534 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Collège de FranceParisFrance

Personalised recommendations