Skip to main content

Earliest Arrival Transshipments in Networks with Multiple Sinks

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11480))

  • 1197 Accesses

Abstract

We study a classical flow over time problem that captures the essence of evacuation planning: given a network with capacities and transit times on the arcs and sources/sinks with supplies/demands, an earliest arrival transshipment (EAT) sends the supplies from the sources to the sinks such that the amount of flow which has reached the sinks is maximized for every point in time simultaneously. In networks with only a single sink earliest transshipments do exist for every choice of supplies and demands. This is why so far a lot of effort has been put into the development of efficient algorithms for computing EATs in this class of networks, whereas not much is known about EATs in networks with multiple sinks, aside from the fact that they don’t exist in general.

We make huge progress regarding EATs in networks with multiple sinks by formulating the first exact algorithm that decides whether a given tight EAT problem has solution and that computes the EAT in case of existence. Our algorithm only works on the originally given network without requiring any form of expansion and thus just requires polynomial space. Complementing this algorithm we show that in multiple sink networks it is, already for tight instances, \(\mathcal {NP}\)-hard to decide whether an EAT does exist for a specific choice of supplies and demands.

This work was supported by the DFG SPP 1736 “Algorithms for Big Data”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exist two different models for flows over time – a discrete and a continuous model. We consider the continuous model but the presented results also hold in the discrete case (see also [12]).

References

  1. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34, 499–512 (2009). https://doi.org/10.1287/moor.1090.0382

    Article  MathSciNet  MATH  Google Scholar 

  2. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. Zeitschrift für Oper. Res. 37(1), 31–58 (1993). https://doi.org/10.1007/BF01415527

    Article  MathSciNet  MATH  Google Scholar 

  3. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation. Fire Technol. 18(1), 90–113 (1982). https://doi.org/10.1007/BF02993491

    Article  Google Scholar 

  4. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory Ser. B 36(2), 161–188 (1984). https://doi.org/10.1016/0095-8956/(84)90023-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985). https://doi.org/10.1007/BF02579361

    Article  MathSciNet  MATH  Google Scholar 

  6. Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 858–872. Society for Industrial and Applied Mathematics SIAM (2015). https://doi.org/10.1137/1.9781611973730.59

  7. Dressler, D., et al.: On the use of network flow techniques for assigning evacuees to exits. Procedia Eng. 3, 205–215 (2010). https://doi.org/10.1016/j.proeng.2010.07.019

    Article  Google Scholar 

  8. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, pp. 69–87 (1970)

    Google Scholar 

  9. Fleischer, L.: Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12(1), 18–35 (2001). https://doi.org/10.1137/S1052623497327295

    Article  MathSciNet  MATH  Google Scholar 

  10. Fleischer, L., Iwata, S.: Improved algorithms for submodular function minimization and submodular flow. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 107–116. Association for Computing Machinery ACM (2000). http://doi.acm.org/10.1145/335305.335318

  11. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6), 1600–1630 (2007). https://doi.org/10.1137/S0097539703427215

    Article  MathSciNet  MATH  Google Scholar 

  12. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998). https://doi.org/10.1016/S0167-6377(98)00037-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958). https://doi.org/10.1287/opre.6.3.419

    Article  MathSciNet  Google Scholar 

  14. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962). https://press.princeton.edu/titles/9233.html

  15. Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959). https://doi.org/10.1307/mmj/1028998140

    Article  MathSciNet  MATH  Google Scholar 

  16. Groß, M., Kappmeier, J.-P.W., Schmidt, D.R., Schmidt, M.: Approximating earliest arrival flows in arbitrary networks. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 551–562. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_48

    Chapter  Google Scholar 

  17. Hajek, B., Ogier, R.G.: Optimal dynamic routing in communication networks with continuous traffic. Networks 14(3), 457–487 (1984). https://doi.org/10.1002/net.3230140308

    Article  MathSciNet  MATH  Google Scholar 

  18. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: efficient algorithms and complexity. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 397–409. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_33

    Chapter  MATH  Google Scholar 

  19. Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems: a state of the art. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000). https://doi.org/10.1287/moor.25.1.36.15211

    Article  MathSciNet  MATH  Google Scholar 

  21. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 1–8. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47867-1_1

    Chapter  Google Scholar 

  22. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM (JACM) 48(4), 761–777 (2001). http://doi.acm.org/10.1145/502090.502096

    Article  MathSciNet  Google Scholar 

  23. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation problems in dynamic network flows with uniform arc capacity. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 231–242. Springer, Heidelberg (2006). https://doi.org/10.1007/11775096_22

    Chapter  MATH  Google Scholar 

  24. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for the evacuation problem in a certain class of networks with uniform path-lengths. Discrete Appl. Math. 157, 3665–3677 (2009). https://doi.org/10.1016/j.dam.2009.04.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Kappmeier, J.W.: Generalizations of flows over time with applications in evacuations optimization. Ph.D. thesis, TU Berlin (2014)

    Google Scholar 

  26. Klinz, B.: Cited as personal comunication (1994) in [20]

    Google Scholar 

  27. Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: 56th Annual Symposium on Foundations of Computer Science. pp. 1049–1065. IEEE (2015). https://doi.org/10.1109/focs.2015.68

  28. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2n)\) algorithm for a sink location problem in dynamic tree networks. Discrete Appl. Math. 154, 2387–2401 (2006). http://www.sciencedirect.com/science/article/pii/S0166218X06001880

    Article  MathSciNet  Google Scholar 

  29. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2), 517–527 (1973). https://doi.org/10.1287/opre.21.2.517

    Article  MathSciNet  MATH  Google Scholar 

  30. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2), 237–251 (2009). https://doi.org/10.1007/s10107-007-0189-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Philpott, A.: Continuous-time flows in networks. Math. Oper. Res. 15(4), 640–661 (1990). https://doi.org/10.1287/moor.15.4.640

    Article  MathSciNet  MATH  Google Scholar 

  32. Richardson, D., Tardos, É.: Cited as personal comunication (2002) in [11]

    Google Scholar 

  33. Ruzika, S., Sperber, H., Steiner, M.: Earliest arrival flows on series-parallel graphs. Networks 57(2), 169–173 (2011). https://doi.org/10.1002/net.20398

    Article  MathSciNet  MATH  Google Scholar 

  34. Schlöter, M., Skutella, M.: Fast and memory-efficient algorithms for evacuation problems. In: Klein, P.N. (ed.) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 821–840. Society for Industrial and Applied Mathematics SIAM (2017). https://doi.org/10.1137/1.9781611974782.52

  35. Schmidt, M., Skutella, M.: Earliest arrival flows in networks with multiple sinks. Discrete Appl. Math. 164, 320–327 (2014). https://doi.org/10.1016/j.dam.2011.09.023

    Article  MathSciNet  MATH  Google Scholar 

  36. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000). https://doi.org/10.1006/jctb.2000.1989

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971). https://doi.org/10.1007/BF01753431

    Article  MathSciNet  MATH  Google Scholar 

  38. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21

  39. Tjandra, S.A.: Dynamic network optimization with application to the evacuation problem. Ph.D. thesis, TU Kaiserslautern (2003). https://kluedo.ub.uni-kl.de/frontdoor/index/index/year/2003/docId/1407

  40. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19(7), 1602–1612 (1971). https://doi.org/10.1287/opre.19.7.1602

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Schlöter .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Preliminaries for the Proof of Lemma 1. To prove Lemma 1 we need the notion of static lex-max flows. Let \(\mathcal {N}\) be a dynamic network and \(\prec \) a total order on \(S^+\cup S^-\). A static lexicographically maximum (lex-max) flow x in \(\mathcal {N}\) with respect to \(\prec \) is a static flow which maximizes the net amount of flow sent out of \(S^+ \cup S^-\) in increasing order \(\prec \). For the sinks this means that the flow into them is maximized in decreasing order \(\prec \). If we denote by \({\text {max}}_{\mathcal {N}}(S,X)\) the value of a static maximum flow from \(S \subseteq S^+\) to \(X \subseteq S^-\) in network \(\mathcal {N}\), then it is due to Minieka [29] that

$$\begin{aligned} \begin{aligned} {\text {net}}_{x}(&\{s'\in S^+\cup S^-\mid s' \preceq s\})\\&= {\text {max}}_{\mathcal {N}}(\{s'\in S^+ \mid s' \preceq s\},\{s'\in S^- \mid s \preceq s'\}) \text { }\forall \text { }s \in S^+\cup S^-. \end{aligned} \end{aligned}$$
(2)

The proof of Lemma 1 strongly relies on Lemma 3, a connection between flows over time in \(\mathcal {N}\) satisfying \(\gamma ^{\theta }(X)\) for some rational \(\theta = p,q\) with \(p,q \in \mathbb {Z}_{>0}\) and some \(X \subseteq S^-\), and certain static lex-max flows in the time-expanded network. We consider the time-expanded network \(\mathcal {N}^\theta \) corresponding to our given dynamic network \(\mathcal {N}\) with only a single source s and denote by \(s^*\) the single super source of \(\mathcal {N}^\theta \). Additionally, in each layer \(\theta '\) we attach a super sink \(t_X^{\theta '}\) to nodes \(t^{\theta '}\) with \(t\in X\) by an arc \((t^{\theta '},t^{\theta '}_X)\) with infinite capacity. Similarly, we attach a super sink \(t^{\theta '}_{S^- \setminus X}\) and moreover we add an overall super sink \(t_*^{\theta '}\) to each layer by infinite capacity arcs \((t^{\theta '}_{S^- \setminus X},t_*^{\theta '})\) and \((t^{\theta '}_{X},t_*^{\theta '})\). We consider \(\{t_X^{1/q},t_{S^-\setminus X}^{1/q}, \ldots ,t_X^{p/q},t_{S^-\setminus X}^{p/q} \}\) or \(\{t_*^{1/q}, \ldots ,t_*^{p/q}\}\) as sets of sinks of \(\mathcal {N}^T\).

Lemma 3

A flow over time f in a dynamic network \(\mathcal {N}\) with only a single source s with rational time horizon \(T=p/q\), \(p,q\in \mathbb {Z}_{>0}\), that satisfies \(\gamma ^T(X)\) for some \(X \subseteq S^-\) fulfills the following properties: (1) We have \({\text {net}}_{f}(X,\theta ) = -\gamma ^{\theta }(X)\) for all \(\theta \le T\). (2) The flow over time f induces a static lex-max flow in \(\mathcal {N}^T\) with respect to the total order \(s^* \prec t^{p/q}_{S^- \setminus X} \prec t^{p/q}_{X} \prec t^{(p-1)/q}_{S^- \setminus X} \prec t^{(p-1)/q}_{X} \prec \ldots \prec t^{1/q}_{S^- \setminus X} \prec t^{1/q}_{X}\).

The proof of Lemma 3 mostly relies on (1) and (2) and we skip it here.

Proof of Lemma 1. Lemma 3, (1) and (2), imply for an integral \(T \ge 0\),

Note that \({\text {max}}_{\mathcal {N}^T}(s^*,\{t^1_*,\ldots ,t^i_*\})\) is independent of X and thus in order to show submodularity, it suffices to show that \(g^\theta :2^{S^-} \!\! \rightarrow \mathbb {R}\) with

$$\begin{aligned} g^\theta (X) := {\text {max}}_{\mathcal {N}^T}(s^*,\{t^1_*,\ldots ,t^\theta _*, t_X^\theta \}) \text { for } X \subseteq S^-, \end{aligned}$$

is submodular on \(S^-\) for all \(\theta \in \{1,\ldots ,T\}\). To show this fact, fix some integral \(\theta \), \(A \subseteq B \subseteq S^-\), and \(v \in S^- \setminus B\). We redefine the time-expanded network \(\mathcal {N}^\theta \). In time layer \(\theta \) we now attach a super sink \(t_v^\theta \) to \(v^\theta \), a super sink \(t_A^\theta \) to the copies of sinks in A in layer \(\theta \), a super sink \(t_{B \setminus A}^\theta \) to the copies of the sinks in \(B \setminus A\), and a super sink \(t^\theta _{S^-\setminus (B \cup \{v\})}\) to the copies of the remaining sinks in layer \(\theta \).

Then, \(g^{\theta }(A \cup \{v\}) - g^{\theta }(A)\) is exactly the amount of flow that reaches \(t_v^{\theta }\) in a lex-max flow in \(\mathcal {N}^{\theta }\) with respect to the order \(\prec \) given by

$$\begin{aligned} s^* \prec t^{\theta }_{S^-\setminus (B \cup \{v\})} \prec t^{\theta }_{B \setminus A} \prec t_v^{\theta } \prec t^{\theta }_A \prec t^{\theta -1}_* \prec \ldots \prec t^1_*. \end{aligned}$$

Similarly, \(g^{\theta }(B \cup \{v\}) - g^{\theta }(B)\) is exactly the amount of flow that reaches \(t_v^{\theta }\) in a static lex-max flow in \(\mathcal {N}^{\theta }\) with respect to

$$\begin{aligned} s^* \prec t^{\theta }_{S^-\setminus (B \cup \{v\})} \prec t^{\theta }_v \prec t^{\theta }_{B \setminus A} \prec t^{\theta }_A \prec t^{\theta -1}_* \prec \ldots \prec t^1_*. \end{aligned}$$

Since the sink \(t_v^\theta \) has a higher priority with respect to \(\prec \) in the first order, we obtain \(g^{\theta }(B \cup \{v\}) - g^{\theta }(B) \le g^{\theta }(A \cup \{v\}) - g^{\theta }(A)\), and thus submodularity. The submodularity for arbitrary rational time horizons follows by using a finer discretization of time and for irrational time horizons by continuity.    \(\square \)

Preliminaries for the Proof of Lemma 2. It turns out that Lemma 2 is a direct consequence of the following lemma which is the reverse direction of Lemma 3.

Lemma 4

Let \(\mathcal {N}\) be a dynamic network and \(T = p/q\) with \(p,q \in \mathbb {Z}_{>0}\) a rational time horizon. A static lex-max flow x in \({\mathcal {N}}^T\) with respect to the total order

$$\begin{aligned} s^* \prec t^{p/q}_{S^- \setminus X} \prec t^{p/q}_{X} \prec t^{(p-1)/q}_{S^- \setminus X} \prec t^{(p-1)/q}_{X} \prec \ldots \prec t^{1/q}_{S^- \setminus X} \prec t^{1/q}_{X}, \end{aligned}$$

induces a flow over time with time horizon T satisfying \(\gamma ^\theta (X)\) for each \(\theta \in [0,T)\).

Proof

For the simplification of notation we only consider integral time horizons in our proof. Let f be the flow over time induced by the static lex-max flow x. By Lemma 3, (1) and (2) we obtain for our flow over time f,

By definition of f and (1) it also holds that \(|f|_\theta = o^{\theta }(\{s\})\) for all \(\theta \in \{0,1,\ldots ,T\}\). The function \(\theta \mapsto o^{\theta }(\{s\})\) is piecewise linear [29, 40] and since all transit times are integral, breakpoints of this function only occur at integral points in time. However, by the construction of f from x (see [25]) the function \(\theta \mapsto |f|_\theta \) is also a piecewise linear function with breakpoints only occurring at integral points in time. Thus, we have \(|f|_\theta = o^{\theta }(\{s\})\) for all \(\theta \le T\) and hence by our arguing above the flow over time f satisfies \(\gamma ^\theta (X)\) for each integral \(\theta \in \{1,2,\ldots ,T\}\). By the first statement of Lemma 3, \(\gamma ^\theta (X)\) is satisfied by f for all \(\theta \in [0,T)\).    \(\square \)

We can now prove Lemma 2.

Proof of Lemma 2. Let \(\prec \) be given by \(t_1\prec t_2\prec \ldots \prec t_k\) for \(S^- = \{t_1,t_2,\ldots ,t_k\}\). Lemma 4 implies that a static lex-max flow in \(\mathcal {N}^T\) with respect to a total order \(\prec '\) given by \(s^* \prec ' t^{p/q}_1 \prec ' \ldots \prec ' t^{p/q}_k \prec ' t^{(p-1)/q}_1 \prec ' \ldots \prec ' t^{(p-1)/q}_{k} \prec ' \ldots \prec ' t^{1/q}_1 \prec ' \ldots \prec ' t^{1/q}_k\) induces a flow over time f with the required properties.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlöter, M. (2019). Earliest Arrival Transshipments in Networks with Multiple Sinks. In: Lodi, A., Nagarajan, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2019. Lecture Notes in Computer Science(), vol 11480. Springer, Cham. https://doi.org/10.1007/978-3-030-17953-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17953-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17952-6

  • Online ISBN: 978-3-030-17953-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics