Skip to main content

Herglotz’ Generalized Variational Principle and Contact Type Hamilton-Jacobi Equations

  • Chapter
  • First Online:
Trends in Control Theory and Partial Differential Equations

Part of the book series: Springer INdAM Series ((SINDAMS,volume 32))

Abstract

We develop an approach for the analysis of fundamental solutions to Hamilton-Jacobi equations of contact type based on a generalized variational principle proposed by Gustav Herglotz. We also give a quantitative Lipschitz estimate on the associated minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, 2nd edn. Springer, New York (1989)

    Google Scholar 

  2. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series, vol. 207. Longman (1989)

    Google Scholar 

  3. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-Dimensional Variational Problems. An Introduction. Oxford Lecture Series in Mathematics and its Applications, vol. 15. The Clarendon Press, Oxford University Press (1998)

    Google Scholar 

  4. Cannarsa, P., Cheng, W.: Generalized characteristics and Lax-Oleinik operators: global theory. Calc. Var. Partial Differ. Equ. 56, 125 (2017)

    Google Scholar 

  5. Cannarsa, P., Cheng, W., Fathi, A.: On the topology of the set of singularities of a solution to the Hamilton-Jacobi equation. C. R. Math. Acad. Sci. Paris 355, 176–180 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cannarsa, P., Cheng, W., Mazzola, M., Wang, K.: Global generalized characteristics for the Dirichlet problem for Hamilton-Jacobi equations at a supercritical energy level, preprint (2018). arXiv:1803.01591

  7. Cannarsa, P., Cheng, W., Yan, J.: Regularity properties of the fundamental solutions of Hamilton-Jacobi equations of contact type, preprint (2017)

    Google Scholar 

  8. Cannarsa, P., Cheng, W., Zhang, Q.: Propagation of singularities for weak KAM solutions and barrier functions. Commun. Math. Phys. 331, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cannarsa, P., Quincampoix, M.: Vanishing discount limit and nonexpansive optimal control and differential games. SIAM J. Control Optim. 53, 1789–1814 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004)

    Google Scholar 

  11. Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order, 2nd edn. Chelsea Publishing, New York (1989)

    MATH  Google Scholar 

  12. Chen, C., Cheng, W.: Lasry-Lions, Lax-Oleinik and generalized characteristics. Sci. China Math. 59, 1737–1752 (2016)

    Article  MathSciNet  Google Scholar 

  13. Chen, C., Cheng, W., Zhang, Q.: Lasry-Lions approximations for discounted Hamilton-Jacobi equations. J. Differ. Equ. 265, 719–732 (2018)

    Article  MathSciNet  Google Scholar 

  14. Chen, Q., Cheng, W., Ishii, H., Zhao, K.: Vanishing contact structure problem and convergence of the viscosity solutions, preprint (2018). arXiv:1808.06046

  15. Clarke, F.: A Lipschitz regularity theorem. Ergod. Theory Dyn. Syst. 27, 1713–1718 (2007)

    Article  MathSciNet  Google Scholar 

  16. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics, vol. 264. Springer (2013)

    Google Scholar 

  17. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill (1955)

    Google Scholar 

  18. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted equation: the discrete case. Math. Z. 284, 1021–1034 (2016)

    Article  MathSciNet  Google Scholar 

  19. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted Hamilton-Jacobi equation. Invent. Math. 206, 29–55 (2016)

    Article  MathSciNet  Google Scholar 

  20. Davini, A., Zavidovique, M.: Aubry sets for weakly coupled systems of Hamilton-Jacobi equations. SIAM J. Math. Anal. 46, 3361–3389 (2014)

    Article  MathSciNet  Google Scholar 

  21. Eisenhart, L.P.: Continuous Groups of Transformations. Dover Publications, New York (1961)

    MATH  Google Scholar 

  22. Fathi, A.: Weak KAM Theorem in Lagragian Dynamics. To be published by Cambridge University Press

    Google Scholar 

  23. Figalli, A., Gomes, D.; Marcon, D.: Weak KAM theory for a weakly coupled system of Hamilton-Jacobi equations. Calc. Var. Partial Differ. Equ. 55, Art. 79 (2016)

    Google Scholar 

  24. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and its Applications (Soviet Series), vol. 18. Kluwer Academic Publishers Group (1988)

    Google Scholar 

  25. Furuta, K., Sano, A., Atherton, D.: State Variable Methods in Automatic Control. Wiley, New York (1988)

    Google Scholar 

  26. Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20, 261–273 (2002)

    Article  MathSciNet  Google Scholar 

  27. Georgieva, B., Guenther, R.: Second Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 26, 307–314 (2005)

    Article  MathSciNet  Google Scholar 

  28. Giaquinta, M., Hildebrandt, S.: Calculus of Variations. II. The Hamiltonian Formalism. Grundlehren der Mathematischen Wissenschaften, vol. 311. Springer (1996)

    Google Scholar 

  29. Gomes, D.A.: Generalized Mather problem and selection principles for viscosity solutions and Mather measures. Adv. Calc. Var. 1, 291–307 (2008)

    Article  MathSciNet  Google Scholar 

  30. Guenther, R., Gottsch, A., Guenther, C.: The Herglotz Lectures on Contact Transformations and Hamiltonian Systems. Schauder Center For Nonlinear Studies, Copernicus University (1995)

    Google Scholar 

  31. Herglotz, G.: Berührungstransformationen, Lectures at the University of Göttingen, Göttingen (1930)

    Google Scholar 

  32. Herglotz, G.: In: Schwerdtfeger H. (ed.) Gesammelte Schriften. Vandenhoeck & Ruprecht, Göttingen (1979)

    Google Scholar 

  33. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    Book  Google Scholar 

  34. Ishii, H., Mitake, H., Tran, H.V.: The vanishing discount problem and viscosity Mather measures. Part 1: the problem on a torus. J. Math. Pures Appl. 108(9), 125–149 (2017)

    Article  MathSciNet  Google Scholar 

  35. Ishii, H., Mitake, H., Tran, H.V.: The vanishing discount problem and viscosity Mather measures. Part 2: boundary value problems. J. Math. Pures Appl. 108(9), 261–305 (2017)

    Article  MathSciNet  Google Scholar 

  36. Iturriaga, R., Sánchez-Morgado, H.: Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete Contin. Dyn. Syst. Ser. B 15, 623–635 (2011)

    Article  MathSciNet  Google Scholar 

  37. Marò, S., Sorrentino, A.: Aubry-Mather theory for conformally symplectic systems. Commun. Math. Phys. 354, 775–808 (2017)

    Article  MathSciNet  Google Scholar 

  38. Mitake, H., Siconolfi, A., Tran, H.V., Yamada, N.: A Lagrangian approach to weakly coupled Hamilton-Jacobi systems. SIAM J. Math. Anal. 48, 821–846 (2016)

    Article  MathSciNet  Google Scholar 

  39. Mrugała, R.: Contact transformations and brackets in classical thermodynamics. Acta Phys. Pol. A 5, 19–29 (1980)

    MathSciNet  Google Scholar 

  40. Su, X., Wang, L., Yan, J.: Weak KAM theory for Hamilton-Jacobi equations depending on unknown functions. Discrete Contin. Dyn. Syst. 36, 6487–6522 (2016)

    Article  MathSciNet  Google Scholar 

  41. Wang, K., Wang, L., Yan, J.: Implicit variational principle for contact Hamiltonian systems. Nonlinearity 30, 492–515 (2017)

    Article  MathSciNet  Google Scholar 

  42. Wang, K., Wang, L., Yan, J.: Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures Appl. 123(9), 167–200 (2019)

    Article  MathSciNet  Google Scholar 

  43. Zhao K., Cheng, W.: On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem, to appear in Discrete Contin. Dyn. Syst

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by Natural Scientific Foundation of China (Grant No.11871267, No. 11631006, No. 11790272 and No. 11771283), and the National Group for Mathematical Analysis, Probability and Applications (GNAMPA) of the Italian Istituto Nazionale di Alta Matematica “Francesco Severi”. Kaizhi Wang is also supported by China Scholarship Council (Grant No. 201706235019). The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The authors are grateful to Qinbo Chen, Cui Chen and Kai Zhao for helpful discussions. This work was motivated when the first two authors visited Fudan University in June 2017. The authors also appreciate the anonymous referee for helpful suggestion to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piermarco Cannarsa .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(\varOmega \subset \mathbb {R}^{n+1}\) be an open set. A function \(f:\varOmega \subset \mathbb {R}\times \mathbb {R}^n\rightarrow \mathbb {R}^n\) is said to satisfy Carathéodory condition if

  • for any \(x\in \mathbb {R}^n\), \(f(\cdot ,x)\) is measurable;

  • for any \(t\in \mathbb {R}\), \(f(t,\cdot )\) is continuous;

  • for each compact set U of \(\varOmega \), there is an integrable function \(m_U(t)\) such that

    $$ |f(t,x)|\leqslant m_U(t),\quad (t,x)\in U. $$

A classical problem is to find an absolutely continuous function x defined on a real interval I such that \((t,x(t))\in \varOmega \) for \(t\in I\) and satisfies the following Carathéodory equation

$$\begin{aligned} \dot{x}(t)=f(t,x(t)),\quad a.e., t\in I. \end{aligned}$$
(41)

Proposition 8

(Carathéodory) If \(\varOmega \) is an open set in \(\mathbb {R}^{n+1}\) and f satisfies the Carathéodory conditions on \(\varOmega \), then, for any \((t_0, x_0)\) in \(\varOmega \), there is a solution of (41) through \((t_0, x_0)\). Moreover, if the function f(tx) is also locally Lipschitzian in x with a measurable Lipschitz function, then the uniqueness property of the solution remains valid.

For the proof of Proposition 8 and more results related to Carathéodory equation (41), the readers can refer to [17, 24].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cannarsa, P., Cheng, W., Wang, K., Yan, J. (2019). Herglotz’ Generalized Variational Principle and Contact Type Hamilton-Jacobi Equations. In: Alabau-Boussouira, F., Ancona, F., Porretta, A., Sinestrari, C. (eds) Trends in Control Theory and Partial Differential Equations. Springer INdAM Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-17949-6_3

Download citation

Publish with us

Policies and ethics