Skip to main content

Classifying Breast Cancer Histopathological Images Using a Robust Artificial Neural Network Architecture

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

Abstract

Pathological diagnosis is the standard for the diagnosis and identification of breast malignancies. Computer-aided diagnosis (CAD) is widely applied in pathological image analysis to help pathologists improving the accuracy, efficiency, and consistency in diagnosis. The traditional CAD methods rely on the expert domain knowledge, time-consuming feature engineering, which is insufficient to real-world systems. In recent studies, deep learning methods have been explored to improve the performance of pathological CAD. However, typical deep methods mainly suffer from the following limitations on pathological image classification. (i) The model cannot extract rich and informative features due to the shallow network structure. (ii) The commonly adopted patch-wise classification strategy makes it impossible to obtain the global features at the image level. To address the two issues, in this paper we propose to use a deep ResNet structure with Convolutional Block Attention Module (CBAM), in order to extract richer and finer features from pathological images. Moreover, we abandon the patch-wise classification strategy and perform an end-to-end training instead. The public BreakHis dataset is used to evaluate our proposed method. The results show that our model achieves a significant improvement over the baseline methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/.

References

  1. Lauby-Secretan, B., et al.: Breast-cancer screening - viewpoint of the IARC working group. New Engl. J. Med. 372(24), 2353–2358 (2015). https://doi.org/10.1056/NEJMsr1504363. pMID: 26039523

    Article  Google Scholar 

  2. United States Preventive Services Task Force: Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 151(10), 716–726 (2009). https://doi.org/10.7326/0003-4819-151-10-200911170-00008

  3. Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R.: Hematoxylin and eosin staining of tissue and cell sections. CSH Protocols 2008, pdb.prot4986, May 2008

    Google Scholar 

  4. Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313, 1122–1132 (2015)

    Article  Google Scholar 

  5. Geng, Y., et al.: An improved burden-test pipeline for identifying associations from rare germline and somatic variants. BMC Genom. 18, 55–62 (2017)

    Article  Google Scholar 

  6. Wang, J., Zhao, Z., Cao, Z., Yang, A., Zhang, J.: A probabilistic method for identifying rare variants underlying complex traits. BMC Genom. 14(S1), S11 (2013)

    Google Scholar 

  7. Zhang, X., Wang, Y., Zhao, Z., Wang, J.: An efficient algorithm for sensitively detecting circular RNA from RNA-seq data. Int. J. Mol. Sci. 19(10) (2018). http://www.mdpi.com/1422-0067/19/10/2897

    Article  Google Scholar 

  8. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013)

    Article  Google Scholar 

  9. Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  10. Sanchez-Morillo, D., González, J., García-Rojo, M., Ortega, J.: Classification of breast cancer histopathological images using KAZE features. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 276–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_26

    Chapter  Google Scholar 

  11. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  12. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: International Joint Conference on Neural Networks (2016)

    Google Scholar 

  13. Bayramoglu, N., Kannala, J., Heikkila, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: International Conference on Pattern Recognition, pp. 2440–2445 (2017)

    Google Scholar 

  14. Wang, P., Hu, X., Li, Y., Liu, Q., Zhu, X.: Automatic Cell Nuclei Segmentation and Classification of Breast Cancer Histopathology Images. Elsevier North-Holland, Inc. (2016)

    Google Scholar 

  15. Zhang, D., et al.: Panoptic segmentation with an end-to-end cell R-CNN for pathology image analysis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 237–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_27

    Chapter  Google Scholar 

  16. Spanhol, F.A., Oliveira, L.S., Cavalin, P.R., Petitjean, C., Heutte, L.: Deep features for breast cancer histopathological image classification. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1868–1873, October 2017

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  18. Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. CoRR abs/1807.06521 (2018). http://arxiv.org/abs/1807.06521

    Chapter  Google Scholar 

  19. Mitra, S., Shankar, B.U.: Medical image analysis for cancer management in natural computing framework. Inf. Sci. 306, 111–131 (2015)

    Article  Google Scholar 

  20. George, Y.M., Zayed, H.H., Roushdy, M.I., Bagoury, B.M.: Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst. J. 8(3), 949–964 (2014)

    Article  Google Scholar 

  21. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1665–1672 (2011)

    Google Scholar 

  25. Chattoraj, S., Vishwakarma, K.: Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signatures. CoRR abs/1801.04880 (2018). http://arxiv.org/abs/1801.04880

Download references

Acknowledgment

This work was supported in part by National Key Research and Development Program of China under grant number 2018YFC130078; National Natural Science Foundation of China under No.61672420; Project of China Knowledge Center for Engineering Science and Technology; the consulting research project of Chinese academy of engineering “The Online and Offline Mixed Educational Service System for ‘The Belt and Road’ Training in MOOC China”; Innovative Research Group of the National Natural Science Foundation of China under No.61721002; Innovation Research Team of Ministry of Education No. IRT_17R86; CERNET Innovation Project (NGII20170101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinbin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2019). Classifying Breast Cancer Histopathological Images Using a Robust Artificial Neural Network Architecture. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics