Skip to main content

A Greedy Algorithm for Detecting Mutually Exclusive Patterns in Cancer Mutation Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

Abstract

Some somatic mutations are reported to present mutually exclusive patterns. It is a basic computational problem to efficiently extracting mutually exclusive patterns from cancer mutation data. In this article, we focus on the inter-set mutual exclusion problem, which is to group the genes into at least two sets, with the mutations in the different sets mutually exclusive. The proposed algorithm improves the calculation of the score of mutual exclusion. The improved measurement considers the percentage of supporting cases, the approximate exclusivity degree and the pair-wise similarities of two genes. Moreover, the proposed algorithm adopts a greedy strategy to generate the sets of genes. Different from the existing approaches, the greedy strategy considers the scores of mutual exclusion between both the genes and virtual genes, which benefits the selection with the size restrictions. We conducted a series of experiments to verify the performance on simulation datasets and TCGA dataset consisting of 477 real cases with more than 10 million mutations within 28507 genes. According to the results, our algorithm demonstrated good performance under different simulation configurations. In addition, it outperformed CoMEt, a widely-accepted algorithm, in recall rates and accuracies on simulation datasets. Moreover, some of the exclusive patterns detected from TCGA dataset were supported by published literatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dees, N.D., Zhang, Q., Kandoth, C., et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22(8), 1589–1598 (2012)

    Article  Google Scholar 

  2. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)

    Article  Google Scholar 

  3. Huang, K., Mashl, R.J., Wu, Y., et al.: Patheogenic germline variants in 10,389 adult cancers. Cell 173(2), 355–370 (2018)

    Article  Google Scholar 

  4. Lu, C., Xie, M., Wendl, M., et al.: Patterns and functional implications of rare germline variants across 12 cancer types. Nat. Commun. 6, 10086 (2015)

    Article  Google Scholar 

  5. Wendl, M.C., Wallis, J.W., Lin, L., et al.: PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 27(12), 1595–1602 (2011)

    Article  Google Scholar 

  6. Giovanni, C., Ethan, C., Chris, S., et al.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398 (2012)

    Article  Google Scholar 

  7. Aldape, K.D., Sulman, E.P., Settle, S.H., et al.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med. Genomics 4(1), 34 (2011)

    Article  Google Scholar 

  8. Leiserson, M.D.M., Wu, H.T., Vandin, F., et al.: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol. 16(1), 160 (2015)

    Article  Google Scholar 

  9. Kim, Y.A., Cho, D.Y., Dao, P., et al.: MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284 (2015)

    Article  Google Scholar 

  10. Leiserson, M.D.M., Reyna, M.A., Raphael, B.J.: A weighted exact test for mutually exclusive mutations in cancer. Bioinformatics 32(17), i736–i745 (2016)

    Article  Google Scholar 

  11. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  MathSciNet  Google Scholar 

  12. Wang, C., Li, L., Cheng, W., et al.: A new approach for persistent cloaca: laparoscopically assisted anorectoplasty and modified repair of urogenital sinus. J. Pediatr. Surg. 50(7), 1236–1240 (2015)

    Article  Google Scholar 

  13. Khalilipour, N., Baranova, A., Jebelli, A., et al.: Familial esophageal squamous cell carcinoma with damaging rare/germline mutations in, KCNJ12/KCNJ18, and GPRIN2, genes. Cancer Genet. 221, 46–52 (2017). S221077621630299X

    Article  Google Scholar 

  14. Boyden, L.M., Vincent, N.G., Zhou, J., et al.: Mutations in, KDSR, Cause Recessive Progressive Symmetric Erythrokeratoderma. Am. J. Hum. Genet. 100(6), 978–984 (2017)

    Article  Google Scholar 

  15. Huang, W.-C., Tung, S.-L., Chen, Y.-L., et al.: IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer 18(1), 609 (2018)

    Article  Google Scholar 

  16. Guignard, L., Yang, Y.S., Padilla, A., et al.: The preliminary solution structure of human p13MTCP1, an oncogenic protein encoded by the MTCP1 gene, using 2D homonuclear NMR. J. de Chim. Phys. et de Phys.-Chim. Biol. 95(2), 454–459 (1998)

    Article  Google Scholar 

  17. Kong, Y., Zheng, Y., Jia, Y., et al.: Decreased LIPF expression is correlated with DGKA and predicts poor outcome of gastric cancer. Oncol. Rep. 36(4), 1852–1860 (2016)

    Article  Google Scholar 

  18. Shahi, P., Slorach, E.M., Wang, C.Y., et al.: The transcriptional repressor ZNF503/Zeppo2, promotes mammary epithelial cell proliferation and enhances cell invasion. J. Biol. Chem. 290, 3803–3813 (2015)

    Article  Google Scholar 

  19. Huang, H., Chen, J., Ding, C.M., et al.: LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J. Cell Mol. Med. 22, 3238–3245 (2018)

    Article  Google Scholar 

  20. Myklebust, M.P., Fluge, Ø., Immervoll, H., et al.: Expression of DSG1 and DSC1 are prognostic markers in anal carcinoma patients. Br. J. Cancer 106(4), 756–762 (2012)

    Article  Google Scholar 

  21. Poliseno, L.: Pseudogenes: newly discovered players in human cancer. Sci. Signal. 5(242), re5 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation of China (Grant No: 31701150) and the Fundamental Research Funds for the Central Universities (CXTD2017003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongmeng Zhao or Jiayin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C. et al. (2019). A Greedy Algorithm for Detecting Mutually Exclusive Patterns in Cancer Mutation Data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics