Skip to main content

Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Abstract

Levenberg-Marquardt method is a very useful tool for solving nonlinear curve fitting problems; while it is also a very promising alternative of weight adjustment in feed forward neural networks. Forcing the Hessian matrix to stay positive definite, the parameter \( \uplambda \) also turns the algorithm into the well-known variations: steepest-descent and Gauss-Newton. Given the computation time, the results achieved by these methods surely differ while minimizing the sum of squares of errors and with an acceptable accuracy rate in skin tissue recognition. Therefore in this paper, we propose the implementation of these variations in network training by a set of tissue samples borrowed from SFA human skin database. The RGB images taken from the set are converted into YCbCr color space and the networks are individually trained by these methods to create weight arrays minimizing the error squares between the pixel values and the function output. Consisting of hands on computer keyboards, the images are analyzed to find skin tissues for achieving high accuracy with low computation time and for comparison of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  2. Ibrahimy, M.I., Ahsan, M.R., Khalifa, O.O.: Design and optimization of Levenberg-Marquardt based neural network classifier for EMG signals to identify hand motions. Measur. Sci. Rev. 13(3), 142–151 (2013)

    Article  Google Scholar 

  3. Kermani, B.G., Schiffman, S.S., Nagle, H.T.: Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sens. Actuators 110, 13–22 (2005)

    Article  Google Scholar 

  4. Alpar, O.: Keystroke recognition in user authentication using ANN based RGB histogram technique. Eng. Appl. Artif. Intell. 32, 213–217 (2014)

    Article  Google Scholar 

  5. Alpar, O.: Intelligent biometric pattern password authentication systems for touchscreens. Expert Syst. Appl. 42(17–18), 6286–6294 (2015)

    Article  Google Scholar 

  6. Schweiger, M., Arridge, S.R., Nissila, I.: Gauss-Newton method for image reconstruction in diffuse optical tomography. Phys. Med. Biol. 50, 2365–2386 (2005)

    Article  Google Scholar 

  7. Rubæk, T., Meaney, P.M., Meincke, P., Paulsen, K.D.: Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans. Antennas Propag. 55(8), 2320–2331 (2007)

    Article  Google Scholar 

  8. Tanner, J., Wei, K.: Low rank matrix completion by alternating steepest descent methods. Appl. Comput. Harmon. Anal. 40, 417–429 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fiori, S.: A Riemannian steepest descent approach over the inhomogeneous symplectic group: application to the averaging of linear optical systems. Appl. Math. Comput. 283, 251–264 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Kolkur, S., Kalbande, D., Shimpi, P., Bapat, C., Jatakia, J.: Human skin detection using RGB, HSV and YCbCr color models. Adv. Intell. Syst. Res. 137, 324–332 (2017)

    Google Scholar 

  11. Mandal, A.K., Baruah, D.K.: Image segmentation using local thresholding and YCbCr color space. Int. J. Eng. Res. Appl. 3(6), 511–514 (2013)

    Google Scholar 

  12. Casati, J.P.B., Moraes, D.R., Rodrigues, E.L.L.: SFA: a human skin image database based on FERET and AR facial images. In: 2013 IX Workshop de Visão Computacional, Rio de Janeiro, Anais do VIII Workshop de Visão Computacional (2013)

    Google Scholar 

  13. Alpar, O., Krejcar, O.: Detection of irregular thermoregulation in hand thermography by fuzzy C-means. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 255–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_24

    Chapter  Google Scholar 

  14. Alpar, O., Krejcar, O.: Superficial dorsal hand vein estimation. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10208, pp. 408–418. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_36

    Chapter  Google Scholar 

  15. Alpar, O., Krejcar, O.: A new feature extraction in dorsal hand recognition by chromatic imaging. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 266–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_26

    Chapter  Google Scholar 

  16. Kirimtat, A., Krejcar, O.: Parametric variations of anisotropic diffusion and gaussian high-pass filter for NIR image preprocessing in vein identification. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 212–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_20

    Chapter  Google Scholar 

  17. Sarabakha, A., Imanberdiyev, N., Kayacan, E., Khanesar, M.A., Hagras, H.: Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles. Inf. Sci. 417, 361–380 (2017)

    Article  Google Scholar 

  18. Amini, K., Rostami, F.: Three-steps modified Levenberg–Marquardt method with a new line search for systems of nonlinear equations. J. Comput. Appl. Math. 300, 30–42 (2016)

    Article  MathSciNet  Google Scholar 

  19. Amini, K., Rostami, F.: A modified two steps Levenberg–Marquardt method for nonlinear equations. J. Comput. Appl. Math. 288, 341–350 (2015)

    Article  MathSciNet  Google Scholar 

  20. Iqbal, J., Iqbal, A., Arif, M.: Levenberg–Marquardt method for solving systems of absolute value equations. J. Comput. Appl. Math. 282, 134–138 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirimtat, A., Krejcar, O., Selamat, A. (2019). Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics