Skip to main content

Detection of Pools of Bacteria with Public Health Importance in Wastewater Effluent from a Municipality in South Africa Using Next Generation Sequencing and Metagenomics Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

Abstract

Wastewater effluents are always accompanied with possibilities for human health risks as diverse pathogenic microorganisms are harboured in them, especially if untreated or poorly treated. They allow the release of pathogens into the environment and these may find its way into food cycle. This paper reports the findings of our research work that focused on the characterization of microorganisms from a municipal final wastewater effluent that receives bulk of its spent water from a research farm. High throughput sequencing using Illumina MiSeq apparatus and metagenomics analysis showed a high abundance of microbial genes, which was dominated by Bacteria (99.88%), but also contained Archaea (0.07%) and Viruses (0.05%). Most prominent in the bacterial group is the Proteobacteria (86.6%), which is a major phylum containing wide variety of pathogens, such as Escherichia, Salmonella, Vibrio, Helicobacter, etc. Further analysis showed that the Genus Thauera occurred in largest amounts across all 6 data sets, while Thiomonas and Bacteroides propionicifaciens also made significant appearances. The presence of some of the detected bacteria like Corynebacterium crenatum showed degradation and/or fermentation in the effluent, which was evidenced by fouling during sampling. Notable pathogens classified with critical criteria by World Health Organization (WHO) for research and development including Acinetobacter sp., Escherichia coli, and Pseudomonas sp. in the effluent were being released to the environment. Our results suggest a potential influence of wastewater effluent on microbial community structure of the receiving water bodies, the environment as well as possible effects on the individuals exposed to the effluents. The evidences from the results in this study suggest an imminent public health problem that may become sporadic if the discharged effluent is not properly treated. This situation is also a potential contributor of antimicrobial resistance genes to the natural environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, L., et al.: VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33(Suppl_1), D325–D328 (2005)

    Google Scholar 

  2. Okoh, A.I., Odjadjare, E.E., Igbinosa, E.O., Osode, A.N.: Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr. J. Biotech. 6(25), 2932–2944 (2007)

    Article  Google Scholar 

  3. Bates, A.J.: Water as consumed and its impact on the consumer—do we understand the variables? Food Chem. Toxicol. 38, S29–S36 (2000)

    Article  Google Scholar 

  4. Olsen, J.S., et al.: Alternative routes for dissemination of Legionella pneumophila causing three outbreaks in Norway. Environ. Sci. Technol. 44(22), 8712–8717 (2010)

    Article  Google Scholar 

  5. Stevik, T.K., Aa, K., Ausland, G., Hanssen, J.F.: Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38(6), 1355–1367 (2004)

    Article  Google Scholar 

  6. Adegoke, A.A., Okoh, A.I.: Species diversity and antibiotic resistance properties of Staphylococcus of farm animal origin in Nkonkobe Municipality, South Africa. Folia Microbiol. 59(2), 133–140 (2014)

    Article  Google Scholar 

  7. Stenström, T.A., Okoh, A.I., Adegoke, A.A.: Antibiogram of environmental isolates of Acinetobacter calcoaceticus from Nkonkobe Municipality, South Africa. Fresenius Environ. Bull. 25, 3059–3065 (2016)

    Google Scholar 

  8. Cai, L., Zhang, T.: Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ. Sci. Technol. 47(10), 5433–5441 (2013)

    Article  Google Scholar 

  9. Trout, D., Mueller, C., Venczel, L., Krake, A.: Evaluation of occupational transmission of hepatitis A virus among wastewater workers. J. Occup. Environ. Med. 42(1), 83 (2000)

    Article  Google Scholar 

  10. Hellmér, M., et al.: Detection of pathogenic viruses in sewage gave early warning on hepatitis A and norovirus outbreaks. Appl. Environ. Microbiol. 80(21), 6771–6781 (2014)

    Article  Google Scholar 

  11. Gilbride, K.A., Lee, D.Y., Beaudette, L.A.: Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J. Microbiol. Methods 66(1), 1–20 (2006)

    Article  Google Scholar 

  12. Wen, Q., Tutuka, C., Keegan, A., Jin, B.: Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. J. Environ. Manag. 90(3), 1442–1447 (2009)

    Article  Google Scholar 

  13. Adegoke, A.A., Faleye, A.C., Stenström, T.A.: Residual antibiotics, antibiotic resistant superbugs and antibiotic resistance genes in surface water catchments: public health impact. Phys. Chem. Earth 105, 177–183 (2018)

    Article  Google Scholar 

  14. Toze, S.: PCR and the detection of microbial pathogens in water and wastewater. Water Res. 33(17), 3545–3556 (1999)

    Article  Google Scholar 

  15. Lee, D.Y., Shannon, K., Beaudette, L.A.: Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J. Microbiol. Methods 65(3), 453–467 (2006)

    Article  Google Scholar 

  16. Lee, D.Y., Lauder, H., Cruwys, H., Falletta, P., Beaudette, L.A.: Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens. Sci. Total Environ. 398(1-3), 203–211 (2008)

    Article  Google Scholar 

  17. Bowler, C., Karl, D.M., Colwell, R.R.: Microbial oceanography in a sea of opportunity. Nature 459(7244), 180 (2009)

    Article  Google Scholar 

  18. George, I., Stenuit, B., Agathos, S., Marco, D.: Application of metagenomics to bioremediation. Metagenomics: Theory Methods Appl. 1, 119–140 (2010)

    Google Scholar 

  19. Thomas, T., Gilbert, J., Meyer, F.: Metagenomics-a guide from sampling to data analysis. Microb. Inform. Exp. 2(1), 3 (2012)

    Article  Google Scholar 

  20. Mendes, L.W., Kuramae, E.E., Navarrete, A.A., Van Veen, J.A., Tsai, S.M.: Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8(8), 1577 (2014)

    Article  Google Scholar 

  21. Andreote, F.D., et al.: The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7(6), e38600 (2012)

    Article  Google Scholar 

  22. Marco, D. (ed.): Metagenomics: Current Innovations and Future Trends. Horizon Scientific Press, Poole (2011)

    Google Scholar 

  23. Martins, L.F., et al.: Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS One 8(4), e61928 (2013)

    Article  Google Scholar 

  24. Adetiba, E., Olugbara, O.O., Taiwo, T.B.: Identification of pathogenic viruses using genomic cepstral coefficients with radial basis function neural network. In: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (eds.) Advances in Nature and Biologically Inspired Computing. AISC, vol. 419, pp. 281–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27400-3_25

    Chapter  Google Scholar 

  25. Adetiba, E., Olugbara, O.O.: Classification of eukaryotic organisms through cepstral analysis of mitochondrial DNA. In: Mansouri, A., Nouboud, F., Chalifour, A., Mammass, D., Meunier, J., ElMoataz, A. (eds.) ICISP 2016. LNCS, vol. 9680, pp. 243–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33618-3_25

    Chapter  Google Scholar 

  26. Adetiba, E., Badejo, J.A., Thakur, S., Matthews, V.O., Adebiyi, M.O., Adebiyi, E.F.: Experimental investigation of frequency chaos game representation for in silico and accurate classification of viral pathogens from genomic sequences. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10208, pp. 155–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_13

    Chapter  Google Scholar 

  27. Adetiba, E., et al.: Alignment-free Z-curve genomic cepstral coefficients and machine learning for classification of viruses. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 290–301. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78723-7_25

    Chapter  Google Scholar 

  28. World Health Organization-WHO: Guidelines for the Safe Use of Wastewater, Excreta and Greywater, vol. I-IV. World Health Organization, Geneva (2006)

    Google Scholar 

  29. Gonzalez-Martinez, A., et al.: Comparison of bacterial communities of conventional and A-stage activated sludge systems. Sci. Rep. 6, 18786 (2016)

    Article  Google Scholar 

  30. Truong, D.T., et al.: MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12(10), 902 (2015)

    Article  Google Scholar 

  31. Asnicar, F., Weingart, G., Tickle, T.L., Huttenhower, C., Segata, N.: Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015)

    Article  Google Scholar 

  32. Ondov, B.D., Bergman, N.H., Phillippy, A.M.: Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12(1), 385 (2011)

    Article  Google Scholar 

  33. Sharmin, F., Wakelin, S., Huygens, F., Hargreaves, M.: Firmicutes dominate the bacterial taxa within sugar-cane processing plants. Sci. Rep. 3, 3107 (2013)

    Article  Google Scholar 

  34. Cantafio, A.W., Hagen, K.D., Lewis, G.E., Bledsoe, T.L., Nunan, K.M., Macy, J.M.: Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl. Environ. Microbiol. 62(9), 3298–3303 (1996)

    Google Scholar 

  35. Liu, B., et al.: Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiol. Ecol. 55(2), 274–286 (2006)

    Article  Google Scholar 

  36. Shanghai Jiaotong University: A specificity molecule method on function florae in industrial wastewater treatment. China 200610116628(3) (2007)

    Google Scholar 

  37. Jiang, X., Mingchao, M.A., Jun, L.I., Anhuai, L.U., Zhong, Z.: Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci. Front. 15(6), 163–168 (2008)

    Article  Google Scholar 

  38. Ryoki, A., Hirooka, K., Nakai, Y.: Middle-thermophilic sulfur-oxidizing bacteria Thiomonas sp. RAN5 strain for hydrogen sulfide removal. J. Air Waste Manag. Assoc. 62(1), 38–43 (2012)

    Article  Google Scholar 

  39. Arsène-Ploetze, F., et al.: Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet. 6(2), e1000859 (2010)

    Article  Google Scholar 

  40. WHO: WHO priority pathogens list for R&D of new antibiotics, May 2017. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf

  41. Kang, A., Lee, T.S.: Converting sugars to biofuels: ethanol and beyond. Bioengineering 2(4), 184–203 (2015)

    Article  Google Scholar 

  42. USEPAL: Guidelines for Water Reuse. U.S. Environmental Protection Agency Office of Wastewater Management Office of Water, Washington, D.C. (2012). https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1530.pdf

  43. Adegoke, A.A., Madu, C.E., Aiyegoro, O.A., Stenström, T.A.: Antibiogram and beta lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Scientific Reports (2018, in press)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Agricultural Research Council- Animal Production, Irene, South Africa for the provision of the research grants to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Adetiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adegoke, A.A. et al. (2019). Detection of Pools of Bacteria with Public Health Importance in Wastewater Effluent from a Municipality in South Africa Using Next Generation Sequencing and Metagenomics Analysis. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics