Skip to main content

Reliable Simulation and Monitoring of Hybrid Systems Based on Interval Analysis

(Extended Abstract)

  • Conference paper
  • First Online:
Book cover Cyber Physical Systems. Design, Modeling, and Evaluation (CyPhy 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11267))

  • 403 Accesses

Abstract

Hybrid systems serve as a high-level model of cyber-physical systems. Formal methods for hybrid systems have been studied energetically for around three decades and various methods for reachability analysis and approximation of continuous states/behaviors have been proposed (e.g., [1, 8]). Another line of technology, e.g., MATLAB/Simulink and Modelica, has been developed in the simulation of hybrid systems and has driven the rise of model-based development in the industry. While reachability analysis methods aim to analyze whole behaviors of a given system with carefully taking care of numerical computation errors, the latter technology focuses on efficient simulation of an approximated trajectory of a practical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mathworks.com/products/matlab.html.

  2. 2.

    https://www.modelica.org/.

References

  1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bouissou, O., Mimram, S., Chapoutot, A.: HySon: set-based simulation of hybrid systems. In: 23rd IEEE International Symposium on Rapid System Prototyping (RSP), pp. 79–85 (2012)

    Google Scholar 

  3. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: IEEE Real-Time Systems Symposium, pp. 183–192 (2012)

    Google Scholar 

  4. Collins, P., Goldsztejn, A.: The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems. Electron. Notes Theor. Comput. Sci. 223(639), 87–102 (2008)

    Article  Google Scholar 

  5. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  6. Duracz, A., Bartha, F.A., Taha, W.: Accurate rigorous simulation should be possible for good designs. In: Workshop on Symbolic and Numerical Methods for Reachability Analysis (SNR), pp. 1–10 (2016)

    Google Scholar 

  7. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6_14

    Chapter  Google Scholar 

  8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  9. Goldsztejn, A., Ishii, D.: A parallelotope method for hybrid system simulation. Reliable Comput. 23, 163–185 (2016)

    MathSciNet  Google Scholar 

  10. Goubault, E., Mullier, O., Kieffer, M.: Inner approximated reachability analysis. In: HSCC, pp. 163–172 (2014)

    Google Scholar 

  11. Ishii, D., Goldsztejn, A.: HySIA: tool for simulating and monitoring hybrid automata based on interval analysis. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 370–379. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_23

    Chapter  Google Scholar 

  12. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring bounded LTL properties using interval analysis. In: 8th International Workshop on Numerical Software Verification (NSV). ENTCS 317, pp. 85–100 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring temporal properties using interval analysis. In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E99-A (2016)

    Article  Google Scholar 

  14. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT - 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  16. Mohaqeqi, M., Mousavi, M.R., Taha, W.: Conformance testing of cyber-physical systems: a comparative study. In: 14th International Workshop on Automated Verification of Critical Systems (AVOCS) (2014)

    Google Scholar 

  17. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing an over-approximation for the reachable set of uncertain nonlinear systems. IEEE Trans. Autom. Control 54(10), 2352–2364 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst. 5(2), 149–162 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable. Formal Methods Syst. Des. 44(1), 71–90 (2014)

    Article  Google Scholar 

  20. Sandretto, J.A.D., Chapoutot, A.: Validated explicit and implicit runge-kutta methods. Reliable Comput. 22, 78–103 (2016)

    MathSciNet  Google Scholar 

  21. Shmarov, F., Zuliani, P.: ProbReach: Verified probabilistic delta-reachability for stochastic hybrid systems. In: HSCC, pp. 134–139 (2015)

    Google Scholar 

  22. Wang, Q., Zuliani, P., Kong, S., Gao, S., Clarke, E.M.: SReach: A Bounded Model Checker for Stochastic Hybrid Systems. CoRR abs/1404.7206 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by JSPS (KAKENHI 25880008, 15K15968, and 26280024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishii, D., Goldsztejn, A., Yonezaki, N. (2019). Reliable Simulation and Monitoring of Hybrid Systems Based on Interval Analysis. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2017. Lecture Notes in Computer Science(), vol 11267. Springer, Cham. https://doi.org/10.1007/978-3-030-17910-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17910-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17909-0

  • Online ISBN: 978-3-030-17910-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics