Advertisement

Magnetic Resonance Spectroscopy Techniques to Improve Agricultural Systems

  • Sílvio VazJr.Email author
  • Etelvino Henrique Novotny
  • Luiz Alberto Colnago
Chapter
  • 238 Downloads

Abstract

Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) are two types of magnetic resonance (MR) spectroscopy that has been used to study physical and chemical of agriculture inputs and products; biomass; and environmental organic matter, such as soil, sedimentary and aquatic organic matter. Both techniques are very useful in agricultural sciences—highlighting NMR applications—to understand the constitution, properties, functionality and quality of food and non-food crops and soil organic matter, contributing to improve the productive systems related to the agroindustrial chains. This chapter deals with the physical phenomena involved in each one, their uses in agriculture and some examples of practical uses.

Keywords

Spectroscopy Chemical characterization Biomass products Organic matter 

References

  1. Adani F, Genevini P, Tambone F, Montoneri E (2006) Compost effect on soil humic acid: a NMR study. Chemosphere 65:1414–1418CrossRefGoogle Scholar
  2. Berman P, Meiri N, Colnago LA, Moraes TB, Linder C, Levi O, Parmet Y, Saunders M, Wiesman Z (2015) Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnol Biofuels 8:12CrossRefGoogle Scholar
  3. Bunce NJ (1987) Introduction to the interpretation of electron spin resonance spectra of organic radicals. J Chem Educ 64:907–914CrossRefGoogle Scholar
  4. Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769CrossRefGoogle Scholar
  5. Byrne CMP, Hayes MHB, Kumar R, Novotny EH, Lanigan G, Richards KG, Fay D, Simpson AJ (2010) Compositional changes in the hydrophobic acids fraction of drainage water from different land management practices. Water Res 44:4379–4390CrossRefGoogle Scholar
  6. Christoforidis KC, Un S, Deligiannakis Y (2007) High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. J Phys Chem A 111:11860–11866CrossRefGoogle Scholar
  7. Colnago LA, Azeredo RB, Marchi Netto A, Andrade FD, Venancio T (2011) Rapid analyses of oil and fat content in agri-food products using continuous wave free precession time domain NMR. Magn Reson Chem 49:113–120CrossRefGoogle Scholar
  8. Colnago LA, Andrade FD, Souza AA, Azeredo RB, Lima AA, Cerioni LM, Osán DJ, Pusiol DJ (2014) Why is inline NMR rarely used as industrial sensor? Challenges and opportunities. Chem Eng Technol 37:191–203CrossRefGoogle Scholar
  9. Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders, OrlandoGoogle Scholar
  10. Goodman BA, Hall PL (1994) Clay mineralogy: spectroscopic and chemical determinative methods, Chapter 5. In: Wilson MJ (ed). Chapman & Hall, LondonGoogle Scholar
  11. International Humic Substances Society (2019) Isolation of IHSS samples. http://humic-substances.org/isolation-of-ihss-samples/
  12. Jenkinson EJ, Adamns DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306CrossRefGoogle Scholar
  13. Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, ChichesterGoogle Scholar
  14. Mangrich AS, Vugman N (1988) Bonding parameters of vanadyl ion in humic acid from the Jucu river estuarine region, Brazil. Sci Total Environ 75:235–241CrossRefGoogle Scholar
  15. Martin-Neto L, Rossel R, Sposito G (1998) Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma 81:305–311CrossRefGoogle Scholar
  16. Novotny EH (2002) Estudos espectroscópicos e cromatográficos de substâncias húmicas de solos sob diferentes sistemas de preparo [Spectroscopic and chromatographic studies of humic substances from soils under different preparation systems]. Doctoral thesis, Universidade of São Paulo, São Carlos.  https://doi.org/10.11606/t.75.2002.tde-29032004-182153
  17. Parish RV (1990) NMR, NQR, EPR and Mössbauer spectroscopy in inorganic chemistry. Elis Horwood, LondonGoogle Scholar
  18. Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832CrossRefGoogle Scholar
  19. Saab SC, Martin-Neto L (2003) Use of the EPR technique to determine thermal stability of some humified organic substances found in soil organic-mineral fractions. Quím Nova 26:497–498CrossRefGoogle Scholar
  20. Sachs S, Bubner M, Schmeide K, Choppin GR, Heise KH, Bernhard G (2002) Carbon-13 NMR spectroscopic studies on chemically modified and unmodified synthetic and natural humic acids. Talanta 57:999–1009CrossRefGoogle Scholar
  21. Senesi N (1990) Applications of ESR spectroscopy in soil chemistry. In: Stewart BA (ed) Advances in soil science, vol 14. Springer, New York, pp 77–130Google Scholar
  22. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New YorkGoogle Scholar
  23. Starsinic M, Otake Y, Walker PL Jr, Painter PC (1984) Application of FT-ir spectroscopy to the determination of COOH groups in coal. Fuel 63:1002–1007CrossRefGoogle Scholar
  24. Stevenson FJ (1994) Humus chemistry: genesis, composition, reaction, 2nd edn. Willey, New YorkGoogle Scholar
  25. Steelink C, Tollin G (1962) Stable free radicals in soil humic acid. Biochim Biophys Acta 59:25–34CrossRefGoogle Scholar
  26. Swift RS (1999) Macromolecular properties of soil humic substances: fact, fiction, and opinion. Soil Sci 164:760–802CrossRefGoogle Scholar
  27. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Hanernhauer G, Gerzabek MH (2008) Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment—an application of three different spectroscopic methods. Sci Total Environ 406:256–268CrossRefGoogle Scholar
  28. van Duynhoven J, Voda A, Witek M, Van As H (2010) Time-domain NMR applied to food products. Annu Rep NMR Spectrosc 69:145–197CrossRefGoogle Scholar
  29. Vaz Jr S (2010) Estudo da sorção do antibiótico oxitetraciclina a solos e ácidos húmicos e avaliação dos mecanismos de interação envolvidos [Study of the antibiotic oxytetracycline sorption to soils and humic acids and evaluation of the interaction mechanisms involved]. Doctoral thesis, Universidade of São Paulo, São Carlos.  https://doi.org/10.11606/t.75.2010.tde-30062010-155624
  30. Vliegenthart JFG, Woods RJ (2006) American chemical society. Meeting: NMR spectroscopy and computer modeling of carbohydrates: recent advances. American Chemical Society, Washington, DCGoogle Scholar
  31. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York, p 568Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sílvio VazJr.
    • 1
    Email author
  • Etelvino Henrique Novotny
    • 2
  • Luiz Alberto Colnago
    • 3
  1. 1.Brazilian Agricultural Research Corporation, National Research Center for Agroenergy (Embrapa Agroenergy)Embrapa AgroenergyBrasiliaBrazil
  2. 2.Brazilian Agricultural Research Corporation, Embrapa SoilsRio de JaneiroBrazil
  3. 3.Brazilian Agricultural Research Corporation, Embrapa InstrumentationSão CarlosBrazil

Personalised recommendations