Skip to main content

Magnetic Resonance Spectroscopy Techniques to Improve Agricultural Systems

  • Chapter
  • First Online:
Sustainable Agrochemistry

Abstract

Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) are two types of magnetic resonance (MR) spectroscopy that has been used to study physical and chemical of agriculture inputs and products; biomass; and environmental organic matter, such as soil, sedimentary and aquatic organic matter. Both techniques are very useful in agricultural sciences—highlighting NMR applications—to understand the constitution, properties, functionality and quality of food and non-food crops and soil organic matter, contributing to improve the productive systems related to the agroindustrial chains. This chapter deals with the physical phenomena involved in each one, their uses in agriculture and some examples of practical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adani F, Genevini P, Tambone F, Montoneri E (2006) Compost effect on soil humic acid: a NMR study. Chemosphere 65:1414–1418

    Article  CAS  Google Scholar 

  • Berman P, Meiri N, Colnago LA, Moraes TB, Linder C, Levi O, Parmet Y, Saunders M, Wiesman Z (2015) Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnol Biofuels 8:12

    Article  Google Scholar 

  • Bunce NJ (1987) Introduction to the interpretation of electron spin resonance spectra of organic radicals. J Chem Educ 64:907–914

    Article  CAS  Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769

    Article  CAS  Google Scholar 

  • Byrne CMP, Hayes MHB, Kumar R, Novotny EH, Lanigan G, Richards KG, Fay D, Simpson AJ (2010) Compositional changes in the hydrophobic acids fraction of drainage water from different land management practices. Water Res 44:4379–4390

    Article  CAS  Google Scholar 

  • Christoforidis KC, Un S, Deligiannakis Y (2007) High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. J Phys Chem A 111:11860–11866

    Article  CAS  Google Scholar 

  • Colnago LA, Azeredo RB, Marchi Netto A, Andrade FD, Venancio T (2011) Rapid analyses of oil and fat content in agri-food products using continuous wave free precession time domain NMR. Magn Reson Chem 49:113–120

    Article  Google Scholar 

  • Colnago LA, Andrade FD, Souza AA, Azeredo RB, Lima AA, Cerioni LM, Osán DJ, Pusiol DJ (2014) Why is inline NMR rarely used as industrial sensor? Challenges and opportunities. Chem Eng Technol 37:191–203

    Article  CAS  Google Scholar 

  • Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders, Orlando

    Google Scholar 

  • Goodman BA, Hall PL (1994) Clay mineralogy: spectroscopic and chemical determinative methods, Chapter 5. In: Wilson MJ (ed). Chapman & Hall, London

    Google Scholar 

  • International Humic Substances Society (2019) Isolation of IHSS samples. http://humic-substances.org/isolation-of-ihss-samples/

  • Jenkinson EJ, Adamns DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Mangrich AS, Vugman N (1988) Bonding parameters of vanadyl ion in humic acid from the Jucu river estuarine region, Brazil. Sci Total Environ 75:235–241

    Article  CAS  Google Scholar 

  • Martin-Neto L, Rossel R, Sposito G (1998) Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma 81:305–311

    Article  Google Scholar 

  • Novotny EH (2002) Estudos espectroscópicos e cromatográficos de substâncias húmicas de solos sob diferentes sistemas de preparo [Spectroscopic and chromatographic studies of humic substances from soils under different preparation systems]. Doctoral thesis, Universidade of São Paulo, São Carlos. https://doi.org/10.11606/t.75.2002.tde-29032004-182153

  • Parish RV (1990) NMR, NQR, EPR and Mössbauer spectroscopy in inorganic chemistry. Elis Horwood, London

    Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Saab SC, Martin-Neto L (2003) Use of the EPR technique to determine thermal stability of some humified organic substances found in soil organic-mineral fractions. Quím Nova 26:497–498

    Article  CAS  Google Scholar 

  • Sachs S, Bubner M, Schmeide K, Choppin GR, Heise KH, Bernhard G (2002) Carbon-13 NMR spectroscopic studies on chemically modified and unmodified synthetic and natural humic acids. Talanta 57:999–1009

    Article  CAS  Google Scholar 

  • Senesi N (1990) Applications of ESR spectroscopy in soil chemistry. In: Stewart BA (ed) Advances in soil science, vol 14. Springer, New York, pp 77–130

    Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York

    Google Scholar 

  • Starsinic M, Otake Y, Walker PL Jr, Painter PC (1984) Application of FT-ir spectroscopy to the determination of COOH groups in coal. Fuel 63:1002–1007

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reaction, 2nd edn. Willey, New York

    Google Scholar 

  • Steelink C, Tollin G (1962) Stable free radicals in soil humic acid. Biochim Biophys Acta 59:25–34

    Article  CAS  Google Scholar 

  • Swift RS (1999) Macromolecular properties of soil humic substances: fact, fiction, and opinion. Soil Sci 164:760–802

    Article  Google Scholar 

  • Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Hanernhauer G, Gerzabek MH (2008) Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment—an application of three different spectroscopic methods. Sci Total Environ 406:256–268

    Article  CAS  Google Scholar 

  • van Duynhoven J, Voda A, Witek M, Van As H (2010) Time-domain NMR applied to food products. Annu Rep NMR Spectrosc 69:145–197

    Article  Google Scholar 

  • Vaz Jr S (2010) Estudo da sorção do antibiótico oxitetraciclina a solos e ácidos húmicos e avaliação dos mecanismos de interação envolvidos [Study of the antibiotic oxytetracycline sorption to soils and humic acids and evaluation of the interaction mechanisms involved]. Doctoral thesis, Universidade of São Paulo, São Carlos. https://doi.org/10.11606/t.75.2010.tde-30062010-155624

  • Vliegenthart JFG, Woods RJ (2006) American chemical society. Meeting: NMR spectroscopy and computer modeling of carbohydrates: recent advances. American Chemical Society, Washington, DC

    Google Scholar 

  • Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York, p 568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvio Vaz Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaz, S., Novotny, E.H., Colnago, L.A. (2019). Magnetic Resonance Spectroscopy Techniques to Improve Agricultural Systems. In: Vaz Jr., S. (eds) Sustainable Agrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-17891-8_5

Download citation

Publish with us

Policies and ethics