Advertisement

Management of Agrochemical Residues in the Environment

  • Sílvio VazJr.Email author
  • Luciano Gebler
Chapter
  • 246 Downloads

Abstract

This chapter deals with the more relevant strategies for the management of agrochemical residues in soil and water. Furthermore, the most advanced treatment technologies will be explored.

Keywords

Hazardous residues Technologies of treatment Environmental chemistry 

References

  1. American Society for Testing and Methods (2018) Waste management standards. https://www.astm.org/Standards/waste-management-standards.html. Accessed Aug 2018
  2. Baird C (2002) Química ambiental. Bookman, Porto AlegreGoogle Scholar
  3. Balmer ME, Goss K-U, Schwarzenbach RP (2000) Photolytic transformation of organic pollutants on soil surfaces—an experimental approach. Environ Sci Technol 34:1240–1245CrossRefGoogle Scholar
  4. Brazilian Agricultural Research Corporation. Embrapa (1997) Manual de métodos de análise de solo [Guidelines for soil analysis], 2nd edn. National Research Center for Soils, Rio de JaneiroGoogle Scholar
  5. Castillo MDP, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use—a review. J Agric Food Chem 56:6206–6219CrossRefGoogle Scholar
  6. Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) (2001) Humic substances and chemical contaminants. Soil Society of America, MadisonGoogle Scholar
  7. Conte ED, Dal Magro T, Gebler L (2016) Boas práticas de manejo de solo, plantas daninhas e agricultura de precisão. EDUCS, Caxias do SulGoogle Scholar
  8. de Roffignac L, Cattan P, Mailloux J, Herzog D, Bellec FL (2008) Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions. Pest Manag Sci 64:1303–1313PubMedGoogle Scholar
  9. Diez MC, Tortella GR, Briceño G, Castillo MP, Díaz J, Palma G, Altamirano C, Calderón C, Rubilar O (2013) The influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeated high doses. Electron J Biotechnol. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v16n6-17/1793. Accessed Nov 2018
  10. Don H, Qiang Z, Lian J, Qu J (2017) Degradation of nitro-based pharmaceuticals by UV photolysis: kinetics and simultaneous reduction on halonitromethanes formation potential. Water Res 119:83–90CrossRefGoogle Scholar
  11. Eugris (2018) Further description. http://www.eugris.info/FurtherDescription.asp?e=26&Ca=2&Cy=0&T=In. Accessed Aug 2018
  12. Fogg P, Boxall ABA, Walker A (2003) Degradation of pesticides in biobeds: the effect concentration and pesticide mixtures. J Agric Food Chem 51:5344–5349CrossRefGoogle Scholar
  13. Fogg P, Boxall ABA, Walker A, Jukes A (2004) Leaching pesticides from biobeds: effect of biobed depth and water loading. J Agric Food Chem 52:6217–6227CrossRefGoogle Scholar
  14. Gao W, Liang J, Pizzul L, Feng XM, Zhang K, Castillo MP (2015) Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. Int Biodeterior Biodegratation 98:107–112CrossRefGoogle Scholar
  15. Gebler L, Pizzutti IR, Cardoso CD, Klauberg Filho O, Miquelluti DJ, Santos RSS (2015a) Biorreactors to organize the disposal of phytosanitary effluents of Brazilian apple production. Chem Eng Trans 43:343–348Google Scholar
  16. Gebler L, Pizzutti IR, Magro TD, Santos RSS, Cardoso CD, Klauberg Filho O (2015b) Sistema Biobed Brasil: Tecnologia para Disposição Final de Efluentes Contaminados com Agrotóxicos Originados na Produção de Frutas de Clima Temperado. Embrapa Uva e Vinho, Bento GonçalvesGoogle Scholar
  17. Hisaindee S, Meetani MA, Rauf MA (2013) Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal Chem 49:31–44CrossRefGoogle Scholar
  18. Holmsgaard PN, Dealtry S, Dunon V, Heuer H, Hansen LH, Springael D, Smalla K, Riber L, Sørensen SJ (2017) Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. Environ Pollut 229:854–862CrossRefGoogle Scholar
  19. International Union of Pure and Applied Chemistry (2018) IUPAC compendium of chemical terminology—the gold book. http://goldbook.iupac.org/index.html. Accessed Aug 2018
  20. Karanasios E, Tsiropoulos NG, Karpouzas DG, Ehaliotis C (2010) Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in Southern Europe. J Agric Food Chem 58:9147–9156CrossRefGoogle Scholar
  21. Koumaki E, Mamais D, Noutsopoulos C, Nika M-C, Bletsou AA, Thomaidis NS, Eftaxias A, Stratogianni G (2015) Degradation of emerging contaminants from water under natural sunlight: the effect of season, pH, humic acids and nitrate and identification of photodegradation by-products. Chemosphere 138:675–681CrossRefGoogle Scholar
  22. Mackay D, Shiu W, Ma K (1997) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press, Boca RantonCrossRefGoogle Scholar
  23. Manahan SE (2000) Environmental chemistry. CRC Press, Boca RantonGoogle Scholar
  24. Mirzaei A, Chen Z, Hghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere 174:665–688CrossRefGoogle Scholar
  25. Sniegowski K, Bers K, Van Goetem K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011) Improvement of pesticide mineralization in on-farm biopurification system by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73CrossRefGoogle Scholar
  26. Snoeyink VL, Jenkins D (1996) Química del água [Water chemistry]. Limusa, México CityGoogle Scholar
  27. Spliid NH, Helweg A, Heinrichson K (2006) Leaching and degradation of 21 pesticides in a full-scale model biobed. Chemosphere 65:2223–2232CrossRefGoogle Scholar
  28. Torstensson L (2000) Experiences of biobeds in practical use in Sweden. Pestic Outlook 11:206–211CrossRefGoogle Scholar
  29. Torstensson L, Castillo MP (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spray equipment. Pestic Outlook 8:24–27Google Scholar
  30. United Nations Environment Programme—UNEP (2018) Guidance on chemicals legislation: overview. https://www.unenvironment.org/zh-hans/node/14392. Accessed Nov 2018
  31. University of the West of England (2013) Science for environment policy in-depth report: soil contamination: impacts on human health. Report produced for the European Commission DG Environment. http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf. Accessed Oct 2018
  32. US-Environmental Protection Agency (2018a) Thermal treatment: ex situ. https://clu-in.org/techfocus/default.focus/sec/Thermal_Treatment%3A_Ex_Situ/cat/Overview/. Accessed Aug 2018
  33. US-Environmental Protection Agency (2018b) https://www.epa.gov/hw-sw846/sw-846-compendium. Accessed Aug 2018
  34. Vareli CS, Pizzutti IR, Gebler L, Cardoso CD, Gai DH, Fontana M (2018) Analytical method validation to evaluate dithiocarbamates degradation in biobeds in South of Brazil. Talanta 184:202–209CrossRefGoogle Scholar
  35. Vaz S Jr (2013) Química analítica ambiental [Environmental analytical chemistry]. Embrapa, BrasíliaGoogle Scholar
  36. Vaz Júnior S (2010) Estudo da sorção do antibiótico oxitetraciclina a solos e ácidos húmicos e avaliação dos mecanismos de interação envolvidos. [Study of the antibiotic oxytetracycline sorption to soils and humic acids and evaluation of the interaction mechanisms involved]. PhD thesis, University of São Paulo, São Carlos, Brazil. 2010. http://doi.org/10.11606/T.75.2010.tde-30062010-155624
  37. Vischetti C, Monaci E, Cardinali A, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743CrossRefGoogle Scholar
  38. Weber OLS, Chitolina JC, Camargo AO, Alleoni LRF (2005) Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados [Structural and variable electrical charges of highly weathered tropical soils]. Rev Bras Cienc Solo 29:867–873CrossRefGoogle Scholar
  39. Wenneker M, Beltman WH, De Werd HAE, Van De Zande JC (2008) Identification and quantification of point sources of surface water contamination in fruit culture in the Netherlands. Aspects Appl Biol 84:369–375Google Scholar
  40. World Health Organization (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009. World Health Organization, GenevaGoogle Scholar
  41. World Health Organization (2017) Chemical mixtures in source water and drinking-water. World Health Organization, GenevaGoogle Scholar
  42. Yang L, Li M, Li W, Jiang Y, Qiang Z (2018) Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chem Eng J 342:155–162CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Brazilian Agricultural Research Corporation, National Research Center for Agroenergy (Embrapa Agroenergy), Embrapa Agroenergia, Parque Estação BiológicaBrasiliaBrazil
  2. 2.Brazilian Agricultural Research Corporation, National Research Center for Grape and Wine (Embrapa Grape and Wine), Embrapa Uva e VinhoBento GonçalvesBrazil

Personalised recommendations