Skip to main content

Exposure Characterization Tools for Ecological Risk Assessment of Pesticides in Water

  • Chapter
  • First Online:

Abstract

Risk assessment and management of pesticides are directly related to sustainable agriculture concept because, besides playing an important role in intensified agriculture by protecting crops from pests and diseases and reducing competition from weeds, the use of pesticides can cause human health and ecological problems. Several pesticides have been shown to reduce water quality and result in adverse effects to sensitive organisms, aquatic ecosystems, and human health. Pesticides enter water systems through different pathways, and therefore, it is important to understand the environmental behavior and fate of pesticides and assess their potential exposure and associated risks to the environment. Ecological risk assessment—ERA—has been adopted in many countries for regulatory purpose and as basis for management of pesticides. Models can be used during different stages of the ERA process and include fate-exposure models, exposure-effect models, and integrated models. In this chapter, definitions of ERA are stated. Pesticide environmental behavior processes and modeling approaches are briefly discussed. Tools for ecological exposure characterization in the regulatory context of agricultural pesticides concerning surface water and groundwater bodies are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACP/ECP, American Crop Protection, European Crop Protection (1999) Framework for the ecological risk assessment of plant protection products [S.l.]: ACP/ECP. p 52. (ACP/ECP. Technical Monograph, 21)

    Google Scholar 

  • Adriaanse PI (1996) Fate of pesticides in field ditches: the TOXSWA simulation model. DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, the Netherlands, 241 p (SC-DLO Report 90)

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Rome, Italy

    Google Scholar 

  • Barrett M (1997) Initial tier screening of pesticides for groundwater concentration using the SCI-GROW model. US Environmental Protection Agency, Washington, DC. Available at https://archive.epa.gov/oppefed1/web/html/scigrow_description.html

  • Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildlife Manage 62:821–841

    Google Scholar 

  • Belluck DA, Benjamin SL, Dawson T (1991) Groundwater contamination by atrazine and its metabolites: risk assessment, policy and legal implications. In: Somasundaram L, Coats JR (eds) Pesticide transformation products: fate and significance in the environment. American Chemical Society, Washington, DC, pp 254–273

    Google Scholar 

  • Beltman WHJ, Adriaanse PI (1999) User’s manual TOXSWA 1.2. Simulation of pesticide fate in small surface waters. DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, the Netherlands, 112 p (SC-DLO Technical Document 54)

    Google Scholar 

  • Bereswill R, Golla B, Streloke M, Schulz R (2012) Entry and toxicity of organic pesticides and copper in vineyard streams: erosion rills jeopardize the efficiency of riparian buffer strips. Agr Ecosyst Environ 146:81–92

    CAS  Google Scholar 

  • Bilanin AJ, Teske ME, Barry JW, Ekblad RB (1989) AgDISP: the aircraft spray dispersion model, code development and experiment validation. T ASAE 32(1):327–334

    Google Scholar 

  • Boesten JJTI (2000) From laboratory to field: uses and limitations of pesticide behaviour models for the soil/plant system. Weed Res 40(1):123–138

    CAS  Google Scholar 

  • Boesten JJTI, Kopp H, Adriaanse PI, Brock TCM, Forbes VE (2007) Conceptual model for improving the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotox Environ Safe 66:291–308

    CAS  Google Scholar 

  • Boivin A, Poulsen V (2017) Environmental risk assessment of pesticides: state of the art and prospective improvement from science. Environ Sci Pollut R 24:6889–6894

    CAS  Google Scholar 

  • Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals and common aims in EU legislation. Integr Environ Asses 2:20–46

    Google Scholar 

  • Burns LA (2006) The EXAMS-PRZM exposure simulation shell, user manual for EXPRESS. US Environmental Protection Agency, Athens, GA (EPA/600/R-06/095)

    Google Scholar 

  • Burns LA, Cline DM, Lassiter RP (1982) Exposure analysis modeling system (EXAMS): user manual and system documentation. US Environmental Protection Agency (EPA-600/3-82-023)

    Google Scholar 

  • Calabrese EJ, Baldwin LA (1993) Performing ecological risk assessments. Lewis Publishers, Boca Raton, FL, p 257

    Google Scholar 

  • Campbell KR, Bartell SM, Shaw JL (2000) Characterising aquatic ecological risks from pesticides using a diquat dibromide case study II: approaches using quotients and distributions. Environ Toxicol Chem 19(3):760–774

    CAS  Google Scholar 

  • Carriquiriborde P, Mirabella P, Waichman A, Solomon K, Van den Brink PJ, Maund S (2014) Aquatic risk assessment of pesticides in Latin America. Integr Environ Asses 10(4):539–542

    CAS  Google Scholar 

  • Carsel RF, Imhoff JC, Hummel PR, Cheplick JM, Donigian AS (1998) PRZM-3: a model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: user’s manual for release 3.12. National Exposure Research Laboratory. Office of Research and Development, US Environmental Protection Agency, Athens, GA

    Google Scholar 

  • Carsel RF, Imhoff JC, Hummel PR, Cheplick JM, Donigian JS (1997) PRZM-3, a model for predicting pesticide and nitrogen fate in crop root and unsaturated soil zones: user’s manual for release 3.0. Athens, GA, USEPA

    Google Scholar 

  • Carsel RF, Mulkey LA, Lorber MN, Baskin LB (1985) The pesticide root zone model (PRZM): a procedure for evaluating pesticide leaching threats to groundwater. Ecol Model 30(1–2):49–69

    CAS  Google Scholar 

  • Carsel RF, Smith CN, Mulkey LA, Dean JD, Jowise, P (1984) User’s manual for the pesticide root zone model (PRZM): release 1. Athens, GA: USEPA, 219 p (EPA-600/3-84-109)

    Google Scholar 

  • Clark JR, Lewis MA, Pait AS (1993) Pesticide inputs and risks in coastal wetlands. Environ Toxicol Chem 12:2225–2233

    CAS  Google Scholar 

  • Cornejo J, Hermisín MC, Celis R, Cox L (2005) Methods to determine sorption of pesticides and other organic compounds. In: Bened JA, Carpena RM (eds) Soil—water—solute process characterization. CRC Press, Boca Raton, pp 435–463

    Google Scholar 

  • Crowe AS, Mutch JP (1994) An expert systems approach for assessing the potential for pesticide contamination of ground water. Ground Water 32(3):487–498

    CAS  Google Scholar 

  • CWQG, Canadian Water Quality Guidelines (1999) Task force on water quality guidelines of the Canadian council of resource and environment ministers, Ottawa, ON

    Google Scholar 

  • De Laender F, van den Brink PJ, Janssen CR, Di Guard A (2014) The ChimERA project: coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment. Environ Sci Pollut R 21:6263–6267

    Google Scholar 

  • DeCoursey DG (1992) Developing models with more detail: do more algorithms give more truth? Weed Technol 6(2):709–715

    Google Scholar 

  • Del Re AAM, Trevisan M (1995) Selection criteria of xenobiotic leaching models in soil. Eur J Agron 4:465–472

    Google Scholar 

  • Devos Y, Gaugitsch H, Gray AJ, Maltby L, Martin J, Pettis JS, Romeis J, Rortais A, Schoonjans R, Smith J, Streissl F, Suter GW II (2016) Advancing environmental risk assessment of regulated products under EFSA’s remit. EFSA J 14(S1):s0508

    Google Scholar 

  • Di Guardo A, Gouin T, MacLeod M, Scheringer M (2018) Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment. Environ Sci-Proc Imp 20(1):58–71

    Google Scholar 

  • Di Guardo A, Hermens JLM (2013) Challenges for exposure prediction in ecological risk assessment. Integr Environ Assess Manag 9(3):4–14. https://doi.org/10.1002/ieam.1442

    Article  Google Scholar 

  • Di HJ, Aylmore LAG (1997) Modeling the probabilities of groundwater contamination of pesticides. Soil Sci Soc Am J 61:17–23

    CAS  Google Scholar 

  • Dubus IG, Beulke S, Brown CD (2002) Calibration of pesticide leaching models: critical review and guidance for reporting. Pest Manag Sci 58:745–758 (online: 2002)

    CAS  PubMed  Google Scholar 

  • ECOFRAM, Ecological Committee on FIFRA Risk Assessment Methods (1999) ECOFRAM Aquatic and Terrestrial Final Draft Reports, US environmental protection agency USEPA. Available at www.epa.gov/oppefed1/ecorisk/index.htm

  • Engel T, Hoogenboom G, Jones JW, Wilkens PW (1997) Aegis/win: a computer program for the application of crop simulation models across geographical areas. Agron J 89(6):919–928

    Google Scholar 

  • FAO, Food and Agriculture Organization of the United Nations (1989) Revised guidelines on environmental criteria for the registration of pesticides. Rome, 51 p

    Google Scholar 

  • Finizio A, Villa S (2002) Environmental risk assessment for pesticides—a tool for decision making. Environ Impact Asses 22:235–248

    Google Scholar 

  • Flury M, Flüher H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30(7):1945–1954

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (2001a) FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, 221 p (EC Document Reference SANCO/4802/2001-rev.1)

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (2001b) FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, 245 p (EC Document Reference SANCO/4802/2001-rev.2)

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (2015) Generic Guidance for FOCUS Surface Water Scenarios. FOCUS Working Group on Surface Water Scenarios, version: 1.4. 367 p

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (2000) FOCUS groundwater scenarios in the EU review of active substances. Ground water Scenarios Workgroup. FOCUS Report, European Commission, 202 p (EC Document Reference SANCO/321/2000 rev.2)

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (2005) Landscape and mitigation factors in aquatic risk assessment. Vol. 1. Extended summary and recommendations. Report of the FOCUS working group on landscape and mitigation factors in ecological risk assessment, 133 p (EC Document reference SANCO/10422/2005)

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (1995) Leaching models and EU registration, 123 p (EC document reference 4952/VI/95)

    Google Scholar 

  • FOCUS, Forum for Co-ordination of Pesticide Fate Models and their Use (1997) Surface water models and EU registration of plant protection products, 231 p (EC document reference 6476/VI/96)

    Google Scholar 

  • Forbes VE, Calow P, Sibly RM (2008) The extrapolation problem and how population modeling can help. Environ Toxicol Chem 27:1987–1994

    CAS  PubMed  Google Scholar 

  • Forbes VE, Hommen U, Thorbek P, Heimbach F, Van den Brink P, Wogram J, Thulke H-H, Grimm V (2009) Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future. Integr Environ Asses 5:167–172

    CAS  Google Scholar 

  • Foster GR, Lane LJ (1987) Beyond the USLE: advancements in soil erosion prediction. In: Boersma LL (ed) Future developments in soil science research. Soil Science of America Society, Madison, pp 315–326

    Google Scholar 

  • Fry M, Milians K, Young D, Zhong H (2014) Surface Water Concentration Calculator User Manual. Environmental Fate and Effects Division, Office of Pesticides, United States Environmental Protection Agency, 21 p (USEPA/OPP 734F14001)

    Google Scholar 

  • Garratt JA, Capri E, Trevisan M, Errera G, Richard M, Wilkins RM (2002) Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Pest Manag Sci 58:3–20 (online: 2002)

    Google Scholar 

  • Ghirardello D, Morselli M, Otto S, Zanin G, Di Guardo A (2014) Investigating the need for complex versus simple scenarios to improve predictions of aquatic ecosystem exposure with the SoilPlus model. Environ Pollut 184:502–510

    CAS  PubMed  Google Scholar 

  • Giannouli DD, Antonopoulos VZ (2015) Evaluation of two pesticide leaching models in an irrigated field cropped with corn. J Environ Manage 150:508–515

    CAS  PubMed  Google Scholar 

  • Gilliom RJ (2007) Pesticides in U.S. streams and groundwater. Environ Sci Technol 41:3408–3414

    CAS  PubMed  Google Scholar 

  • Girling AE, Tattersfield L, Mitchell GC, Crossland NO, Pascoe D, Blockwell SJ, Maund SJ, Taylor EJ, Wenzel A, Janssen CR, Jüttner I (2000) Derivation of predicted no-effect concentrations for lindane, 3,4-dichloroaniline, atrazine and copper. Ecotox Environ Safe 46:148–162

    CAS  Google Scholar 

  • Gonçalves CM, Da Silva JCGE, Alpendurada MF (2007) Evaluation of the pesticide contamination of groundwater sampled over two years from a vulnerable zone in Portugal. J Agr Food Chem 55(15):6227–6235

    Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pèer G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126

    Google Scholar 

  • Hageman KJ, Simonich SL, Campbell DH, Wilson GR, Landers DH (2006) Atmospheric deposition of current-use and historic-use pesticides in snow at national parks in the Western United States. Environ Sci Technol 40:3174–3180

    CAS  PubMed  Google Scholar 

  • Hallberg GR (1989) Pesticide pollution of groundwater in the humid Unites States. Agr Ecosyst Environ 26:299–367

    CAS  Google Scholar 

  • Harman-Fetcho JA, Hapeman CJ, McConnell LL, Potter TL, Rice CP, Sadeghi AM, Smith RD, Bialek K, Sefton KA, Schaffer BA (2005) Pesticide occurrence in selected South Florida canals and Biscayne Bay during high agricultural activity. J Agr Food Chem 53:6040–6048

    CAS  Google Scholar 

  • Hart A (2001) Probabilistic risk assessment for pesticides in Europe: implementation and research needs. European workshop on probabilistic risk assessment for the environmental impacts of plant protection products. The Netherlands

    Google Scholar 

  • Hoffman RS, Capel PD, Larson SJ (2000) Comparison of pesticides in eight U.S. urban streams. Environ Toxicol Chem 19:2249–2258

    CAS  Google Scholar 

  • Hornsby AG, Wauchope RD, Herner AE (1996) Pesticide properties in the environment. Springer-Verlag, New York, NY

    Google Scholar 

  • Hull RN, Kleywegt S, Schroeder J (2015) Risk-based screening of selected contaminants in the Great Lakes Basin. J Great Lakes Res 41:238–245

    CAS  Google Scholar 

  • IBAMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2012) Avaliação de risco ambiental de agrotóxicos no Ibama. DIQUA/CGASQ, Brasília, IBAMA [Portuguese]. Available at http://ibama.gov.br/phocadownload/agrotoxicos/avaliacao/2017/2017-07-25-avaliacao_risco_ambiental_agrotoxicos_ibama_2012-ARA.pdf

  • Jarvis NJ (1991) MACRO—A model of water movement and solute transport in macroporous soils. Uppsala: Swedish University of Agricultural Sciences, 58 p (Reports and Dissertations, 9)

    Google Scholar 

  • Jarvis NJ (1994) The MACRO model (Version 3.1). Technical description and sample simulations. Department of Soil Science, Swedish University of Agricultural Science, Uppsala, Sweden, 51 p (Reports and Dissertations 19)

    Google Scholar 

  • Jarvis NJ, Bergström LF, Brown CD (1995) Pesticide leaching models and their use for management purposes. In: Roberts TR, Kearney PC (eds) Environmental behaviour of agrochemicals. Wiley, New York, pp 185–220

    Google Scholar 

  • Jiang L, Huang J, Liang L, Zheng PY, Yang H (2008) Mobility of prometryne in soil as affected by dissolved organic matter. J Agr Food Chem 56(24):11933–11940

    CAS  Google Scholar 

  • Klein M (1995) PELMO: pesticide leaching model. Fraunhofer Institute, Schmallenberg, p 103

    Google Scholar 

  • Klein M (2011) User Manual PELMO (Pesticide Leaching Model) Version 4.0; Fraunhofer Institute: Schmallenberg, Germany

    Google Scholar 

  • Koskinen WC, Rice PJ, Anhalt JA, Sakaliene O, Moorman TB, Arthur EL (2002) Sorption-desorption of “aged” sulfonylaminocarbonyltriazolinone herbicides in soil. J Agr Food Chem 50:5368–5372

    CAS  Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    CAS  PubMed  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of com and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449

    CAS  PubMed  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Zech W (2002a) Fate of pesticides in tropical soils of Brazil under field conditions. J Environ Qual 31(1):256–268

    CAS  PubMed  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Zech W, Wantzen M, da Silva CJ, Wolfgang Zech W (2002b) Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal Basin. Brazil. J Environ Qual 31(5):1636–1648

    CAS  PubMed  Google Scholar 

  • Larsbo M, Jarvis NJ (2005) Simulating solute transport in a structured field soil: uncertainty in parameter identification and predictions. J Environ Qual 34(2):621–634

    CAS  PubMed  Google Scholar 

  • Larsbo M, Jarvis NJ (2003) MACRO 5.0. A model of water flow and solute transport in macroporous soil. Technical Description. Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Leistra M, van der Linden AMA, Boesten JJTI, Tiktak A, van den Berg F (2001) PEARL model for pesticide behaviour and emissions in soil-plant systems: description of the processes, Alterra Rep 13. Wageningen University and Research Centre, Wageningen, The Netherlands, p 115

    Google Scholar 

  • Leistra M, van der Linden, AMA, Boesten JJTI, Tiktak A, van den Berg F (2000) PEARL Model for Pesticide Behaviour and Emissions in Soil-plant Systems. Description of Processes. Alterra Report 013. Alterra, Wageningen, The Netherlands

    Google Scholar 

  • Lennartz B (1999) Variation of herbicide transport parameters within a single field and its relation to water flux and soil properties. Geoderma 91(3–4):327–345

    CAS  Google Scholar 

  • Leu C, Singer H, Stamm C, Muller SR, Schwarzenbach RP (2004) Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ Sci Technol 38:3835–3841

    CAS  PubMed  Google Scholar 

  • Levanon D, Codling EE, Meisinger JJ, Starr JL (1993) Mobility of agrochemicals through soil from two tillage systems. J Environ Qual 22(1):155–161

    CAS  Google Scholar 

  • Li K, Xing B, Torello WA (2005) Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environ Pollut 134(2):187–194

    CAS  PubMed  Google Scholar 

  • Lorenz S, Rasmussen JJ, Süß A, Kalettka T, Golla B, Horney P, Stähler M, Hommel B, Schäfer RB (2017) Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia 793:213–224

    CAS  Google Scholar 

  • Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. P Natl Acad Sci USA 111:9549–9554

    CAS  Google Scholar 

  • Manahan SE (ed) (1992) Toxicological chemistry, 2nd edn. Lewis Publishers, Ann Arbor, MI

    Google Scholar 

  • Margni M, Rossier D, Crettaz P, Jolliet O (2002) Life cycle impact assessment of pesticides on human health and ecosystems. Agr Ecosyst Environ 93:379–392

    CAS  Google Scholar 

  • Matallo MB, Spadotto CA, Luchini LC, Gomes MAF (2005) Sorption, degradation, and leaching of tebuthiuron and diuron in soil columns. J Environ Sci Heal B 40(1):39–43

    Google Scholar 

  • Matsumura F (ed) (1985) Toxicology of insecticides, 1st edn. Plenum Press, New York, p 598

    Google Scholar 

  • Meyer MT, Kalkoff SJ, Scribner EA (2006) Comparison between the transport of isoxaflutole and its degradates to triazine and acetanilide herbicides in ten Iowa rivers. Proceedings of the 231st National Meeting of the American Chemical Society, Atlanta

    Google Scholar 

  • Miyamoto M, Tanaka H, Katagi T (2008) Ecotoxicological risk assessment of pesticides in aquatic ecosystems. R&D Report, Sumitomo Kagaku, p 18p

    Google Scholar 

  • Mullins JA, Carsel RF, Scarbrough JE, Ivery AM (1993) PRZM-2, a model for predicting pesticide fate in the crop root and unsaturated zones: user’s manual for release 2.0. Athens: United States Environmental Protection Agency (EPA/600/R-93/046)

    Google Scholar 

  • Munns Jr WR (2006) Assessing risks to wildlife populations from multiple stressors: overview of the problem and research needs. Ecol Soc 11:23

    Google Scholar 

  • NRC, National Research Council (1983) Risk assessment in the federal government: managing the process. National Academy Press, Washington DC

    Google Scholar 

  • NRC, National Research Council (1996) Understanding risk: informing decisions in a democratic society. National Academy Press, Washington DC

    Google Scholar 

  • OECD, Organization for Economic Co-operation and Development (1982) OECD Hazard Assessment Project, STEP System Group: final report. Stockholm

    Google Scholar 

  • OECD, Organization for Economic Co-operation and Development (1999) Indirect load. In: OECD (ed), Annex 2. Report of phase 1 of the aquatic risk indicators project, pp 28–32

    Google Scholar 

  • Padilla L, Winchell M, Peranginangin N, Grant S (2017) Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas. Integr Environ Asses 13(6):992–1006

    CAS  Google Scholar 

  • Papastergiou A, Papadopoulou-Mourkidou E (2001) Occurrence and spatial and temporal distribution of pesticide residues in groundwater of major corn-growing areas of Greece. Environ Sci Technol 35:63–69

    CAS  PubMed  Google Scholar 

  • Parker RD, Jones RD, Nelson HP (1995) GENEEC: A screening model for pesticide environmental exposure assessment. In: Proceedings… international exposure symposium on water quality modeling, American Society of Agricultural Engineers, pp 485–490

    Google Scholar 

  • Pastorok RA, Bartell SM, Ferson S (2002) Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes. Lewis, Boca Raton, FL, USA

    Google Scholar 

  • Pennell KD, Hornsby AG, Jessup RE, Rao PSC (1990) Evaluation of five simulation models for predicting aldicarb and bromide behavior under field conditions. Water Resour Res 26(11):2679–2693

    CAS  Google Scholar 

  • Posthuma L, Suter II GW, Traas TP (eds) (2002) Species sensitivity distributions in ecotoxicology. Lewis publishers

    Google Scholar 

  • Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737–748

    CAS  PubMed  Google Scholar 

  • Rao PSC, Davidson JM, Hammond LC (1976) Estimation of nonreactive and reactive solute front locations in soils. In: Hazard: wastes res Symp 1976. Proc., pp 235–241 (EPA-600/19-76-015)

    Google Scholar 

  • Rao PSC, Hornsby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Soil Crop Sci Soc Fl 44:1–8

    CAS  Google Scholar 

  • Reichenberger S, Amelung W, Laabs V, Pinto A, Totsche KU, Zech W (2002) Pesticide displacement along preferential flow pathways in a Brazilian Oxisol. Geoderma 110(1–2):63–86

    CAS  Google Scholar 

  • Rice PJ, Rice PJ, Arthur EL, Barefoot AC (2007) Advances in pesticide environmental fate and exposure assessments. J Agric Food Chem 55:5367–5376

    CAS  PubMed  Google Scholar 

  • Roller JA, Van den Berg F, Adriaanse PI (2003) Surface water scenarios help (SWASH) Version 2.0. Technical Documentation version 1.3. Alterra-rapport 508. Wageningen, Alterra Green World Research, the Netherlands

    Google Scholar 

  • Russell MH, Layton RJ, Tillotson PM (1994) The use of pesticide leaching models in a regulatory setting: an industrial perspective. J Environ Sci Heal A 29:1105–1116

    Google Scholar 

  • Schmolke A, Thorbek P, Chapman P, Grimm V (2010) Ecological models and pesticide risk assessment: current modeling practice. Environ Toxicol Chem 29(4):1006–1012

    CAS  PubMed  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33(2):419–448

    CAS  PubMed  Google Scholar 

  • Scorza PJ Jr, Boesten JJTI (2005) Simulation of pesticide leaching in a cracking clay soil with the PEARL model. Pest Manag Sci 61:432–448

    CAS  Google Scholar 

  • Scorza RP (2002) Pesticide leaching in macroporous clay soils: field experiment and modeling. 234 f. Thesis (Doctoral). Wageningen University and Research Centre, Wageningen

    Google Scholar 

  • Scott GI, Baughman DS, Trim AH, Dee JC (1987) Lethal and sublethal effects of insecticides commonly found in nonpoint source agricultural runoff to estuarine fish and shellfish. In: Vernberg WB, Calabrese A, Thurberg FP, Vernberg FJ (eds) Pollution physiology of estuarine organisms. University of South Carolina Press, Columbia, SC, pp 251–273

    Google Scholar 

  • Seiler AP, Brenneisen P, Green DH (1992) Benefits and risks of plant protection products—possibilities of protecting drinking water: case atrazine. Water Supp 10:31–42

    CAS  Google Scholar 

  • SETAC, Society for Environmental Toxicology and Chemistry (1994) Pesticide risk and mitigation. Final Report of the Aquatic Risk Assessment and Mitigation Dialog Group, SETAC Foundation for Environmental Education, Pensacola, FL, USA, p 220

    Google Scholar 

  • SETAC, Society of Environmental Toxicology and Chemistry (1987) Research priorities in environmental risk assessment. Report of a workshop held in Breckenridge, CO. Washington, DC: SETAC

    Google Scholar 

  • Solomon K (2010) Ecotoxicological risk assessment of pesticides in the environment. Hayes’ Handbook of Pesticide Toxicology. Chapter 56:1191–1217. https://doi.org/10.1016/B978-0-12-374367-1.00056-2

    Article  Google Scholar 

  • Solomon KR (1996) Overview of recent developments in ecotoxicological risk assessment. Risk Anal 16(5):627–633

    CAS  PubMed  Google Scholar 

  • Solomon KR, Sibley P (2002) New concepts in ecological risk assessment: where do we go from here? Mar Pollut Bull 44:279–285

    CAS  PubMed  Google Scholar 

  • Song NH, Chen L, Yang H (2008) Effect of dissolved organic matter on mobility and activation of chlorotoluron in soil and wheat. Geoderma 146(1/2):344–352

    CAS  Google Scholar 

  • Spadotto CA, Hornsby AG (2003) Organic compounds in the environment: soil sorption of acidic pesticides: modeling pH effects. J Environ Qual 32(3):949–956

    CAS  PubMed  Google Scholar 

  • Spadotto CA, Hornsby AG, Gomes MAF (2005) Sorption and leaching potential of acidic herbicides in Brazilian soils. J Environ Sci Heal B 40(1):29–37

    Google Scholar 

  • Spadotto CA, Mingoti R (2014) Base técnico-científica do ARAquá 2014: software para avaliação de risco ambiental de agrotóxico. Campinas: Embrapa Gestão Territorial, 6 p (Embrapa Gestão Territorial. Circular Técnica, 2) (Portuguese)

    Google Scholar 

  • Spadotto CA, Moraes DAC, Ballarin AW, Laperuta Filho J, Colenci RA (2010) ARAquá: software para avaliação de risco ambiental de agrotóxico. Campinas: Embrapa Monitoramento por Satélite, 15 p (Boletim de Pesquisa e Desenvolvimento, 7) (Portuguese)

    Google Scholar 

  • Starfield AM (1997) A pragmatic approach to modeling for wildlife management. J Wildlife Manage 61:261–270

    Google Scholar 

  • Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. P Natl Acad Sci USA 112:5570–5575

    Google Scholar 

  • Stephenson GR, Solomon KR (2007) Pesticides and the environment. Canadian Network of Toxicology Centres Press Guelph, Ontario, Canada

    Google Scholar 

  • Stoorvogel JJ (1995) Linking GIS and models: structure and operationalization for a Costa Rican case study. Neth J Agr Sci 43:19–29

    Google Scholar 

  • Strassemeyer J, Daehmlow D, Dominic AR, Lorenz S, Golla B (2017) SYNOPS-WEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot 97:28–44

    CAS  Google Scholar 

  • Streissl F (2010) Potential role of population modeling in the regulatory context of pesticide authorization. In: Thorbek P, Forbes VE, Heimbach F, Hommen U, Thulke H-H, Van den Brink PJ, Wogram J, Grimm V (eds) Ecological Models for Regulatory Risk Assessments of Pesticides: Developing a Strategy for the Future. SETAC, Pensacola, FL, USA, pp 97–104

    Google Scholar 

  • Suter GW, Barnthouse LW, Bartell SM, Mill T, Mackay D, Patterson S (1993) Ecological risk assessment. Lewis Publishers, Boca Raton, FL, p 538

    Google Scholar 

  • Taghavi L, Probst J, Merlina G, Marchand A, Durbe G, Probst A (2010) Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, south west France). Int J Environ An Ch 90:390–405

    CAS  Google Scholar 

  • Teklu BM, Adriaanse PI, Ter Horst MMS, Deneer JW, Van den Brink PJ (2015) Surface water risk assessment of pesticides in Ethiopia. Sci Total Environ 508:566–574

    CAS  PubMed  Google Scholar 

  • Teske ME, Bird SL, Esterly DM, Curbishley TB, Ray SL, Perry SG (2000) AgDRIFT: a model for estimating near-field spray drift from aerial applications. Environ Toxicol Chem 21(3):659–671

    Google Scholar 

  • Tiktak A, Boesten JJTI, Egsmose M, Gardi C, Klein M, Vanderborght J (2013) European scenarios for exposure of soil organisms to pesticides. J Environ Sci Heal B 48(9):703–716

    CAS  Google Scholar 

  • Tiktak A, Boesten JJTI, van der Linden AMA, Vanclooster M (2006) Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL. J Environ Qual 35:1213–1226

    CAS  PubMed  Google Scholar 

  • Tiktak A, van den Berg F, Boesten JJTI, van Kraalingen D, Leistra M and van der Linden AMA (2000) Manual of FOCUS PEARL version 1.1.1, RIVM Rep 711 401 008, RIVM, Bilthoven, The Netherlands, 144 p

    Google Scholar 

  • Tiktak A, Van den Berg F, Boesten JJTI, Van Kraalingen D, Leistra M, Van der Linden AMA (2002) Manual of FOCUS PEARL version 1.1.1. Bilthoven: RIVM/Alterra

    Google Scholar 

  • Tiktak A, van der Linden AMA, Boesten JJTI (2003) The GeoPEARL model: description, applications and manual. RIVM Report 716601007. RIVM, Bilthoven, The Netherlands

    Google Scholar 

  • UNEP, United Nations Environment Program (2009) Existing sources and approaches to risk assessment and management of pesticides, particular needs of developing countries and countries with economies in transition, 95 p

    Google Scholar 

  • USDA, United States Department of Agriculture, Soil Conservation Service (1991) Peak discharge (other methods), study guide. Engineering, Hydrology Training Series, Module 206D, 27 p

    Google Scholar 

  • Urban DJ, Cook NJ (1986) Standard evaluation procedure for ecological risk assessment. Springfield, VA: National Technical Information Service. Hazard Evaluation Division, Office of Pesticide Programs, US Environmental Protection Agency, Washington, DC (NTIS PD 86-247-657)

    Google Scholar 

  • USEPA, United State Environmental Protection Agency (1979) Toxic substances control act, discussion of premanufacture testing policies and technical issues: request for comment. Fed Reg 44:16240–16292

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (1992) Framework for ecological risk assessment. Risk Assessment Forum. Washington, DC (EPA/630/R-92/001).

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (1998) Guidelines for ecological risk assessment. Risk Assessment Forum. Washington, DC (EPA/630/R-95/002F)

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (2001) Risk assessment guidance for superfund: volume III—part A, process for conducting probabilistic risk assessment. Washington, DC (EPA 540-R-02-002)

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (2007) Tier I rice model—version 1.0—guidance for estimating pesticide concentrations in rice paddies. Washington, DC: USEPA. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/tier-i-rice-model-version-10-guidance-estimating

  • USEPA, United States Environmental Protection Agency (2008) FIRST: a screening model to estimate pesticide concentrations in drinking water version 1.1.1. Available at https://archive.epa.gov/epa/pesticide-science-and-assessing-pesticide-risks/first-version-111-description.html

  • USEPA, United States Environmental Protection Agency (2009) User’s guide and technical documentation KABAM version 1.0 (Kow (based) Aquatic BioAccumulation Model). Washington, DC: USEPA. 123 p

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (2011a) Guidance for the development of conceptual models for a problem formulation developed for registration review, Washington. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-development-conceptual-models-problem

  • USEPA, United States Environmental Protection Agency (2011b) Integrated risk information system (IRIS) glossary. Office of Research and Development/National Center for Environmental Assessment/Integrated Risk Information System. Available at https://www.epa.gov/iris

  • USEPA, United States Environmental Protection Agency (2012) Technical overview of ecological risk assessment: risk characterization. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-risk

  • USEPA, United States Environmental Protection Agency (2016) Pesticide in Water Calculator User Manual for Versions 1.50 and 1.52. Washington, DC: USEPA, 23 p

    Google Scholar 

  • USEPA, United States Environmental Protection Agency (2017) Models for pesticide risk assessment. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-risk-assessment

  • USGS, United States Geological Survey (2006) National water quality assessment (NAWQA) program. Available at http://pubs.usgs.gov/fs/2006/3101/

  • Van de Zande JC, Porskamp HAJ, Michielsen JMGP, Holterman HJ, Huijsmans JMF (2000) Classification of spray applications for driftability, to protect surface water. Asp Appl Biol 57:57–64

    Google Scholar 

  • Van den Brink P, Baveco JM, Verboom J, Heimbach F (2007) An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination. Environ Toxicol Chem 26:2226–2236

    PubMed  Google Scholar 

  • Van den Brink PJ, Baird DJ, Baveco JMH, Focks A (2013) The use of traits-based approaches and eco(toxico)logical models to advance the ecological risk assessment framework for chemicals. Integr Environ Asses 9:47–57

    Google Scholar 

  • Van Jaarsveld JHA, Van Pul WAJ (1999) Modeling of atmospheric transport and deposition of pesticides. Water Air Soil Poll 115(1–4):167–182

    Google Scholar 

  • Vanclooster M, Boesten JJTI, Tiktak A, Jarvis NJ, Kroes JG, Munoz-Carpena R, Clothier BE, Green SR (2004) On the use of unsaturated flow and transport models in nutrient and pesticide management. In: Feddes RA, de Rooij GH, van Dam JC (eds) Unsaturated-zone modelling: progress, challenges and applications, vol 6, pp 331–361. Wageningen UR Frontis Series, Wagenignen University: Wagenignen, the Netherlands

    Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields—a review. J Environ Qual 7:459–472

    CAS  Google Scholar 

  • Westman WE (1985) Ecology: impact assessment and environmental planning. Wiley, New York

    Google Scholar 

  • White K, Biscoe M, Fry M, Hetrick J, Orrick G, Peck C, Ruhman M, Shelby A, Thurman N, Villanueva P, Young DF (2016) Development of a conceptual model to estimate pesticide concentrations for human health drinking water and guidance on conducting ecological risk assessments for the use of pesticides on rice. USEPA, Washington DC, p 112

    Google Scholar 

  • WHO, World Health Organization (2004) IPCS Harmonization Project–IPCS Risk Assessment Terminology, Geneva

    Google Scholar 

  • Williams PRD, Hubbell B, Weber E, Fehrenbacher C, Hrdy D, Zartarian V (2010) An Overview of Exposure Assessment Models Used by the US Environmental Protection Agency. In Hanrahan, G. Modelling of Pollutants in Complex Environmental Systems, Volume II. ILM Publications, pp 61–131

    Google Scholar 

  • Wogram J (2010) Regulatory challenges for the potential use of ecological models in risk assessments of plant protection products. In: Thorbek P, Forbes VE, Heimbach F, Hommen U, Thulke H-H, Van den Brink PJ, Wogram J, Grimm V (eds) Ecological models for regulatory risk assessments of pesticides: developing a strategy for the future. SETAC, Pensacola, FL, USA, pp 27–32

    Google Scholar 

  • WWF, World Wildlife Fund (1992) Improving aquatic risk assessment under FIFRA: report of the aquatic effects dialogue group, pp 23–24

    Google Scholar 

  • Young D (2016) The variable volume water model—revision A. Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, 36 p (USEPA/OPP 734S16002)

    Google Scholar 

  • Young DF (2013) Pesticides in flooded applications model (PFAM): conceptualization, development, evaluation, and user guide. Washington, DC: USEPA, 61 p (EPA-734-R-13-001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio A. Spadotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spadotto, C.A., Mingoti, R. (2019). Exposure Characterization Tools for Ecological Risk Assessment of Pesticides in Water. In: Vaz Jr., S. (eds) Sustainable Agrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-17891-8_11

Download citation

Publish with us

Policies and ethics